12. Higher Order Derivatives

Exercise 12.1

26. Question

If y = $\tan^{-1} x$, show that $(1 + x^2) \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} = 0$.

Answer

Formula: -

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

(ii)
$$\frac{d(tan^{-1}x)}{dx} = \frac{1}{1+x^2}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iii)
$$\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
Given: -
 $Y = tan^{-1}x$
Differentiating w.r.t x
 $\frac{dy}{dx} = \frac{d(tan^{-1}x)}{dx}$
Using formula(ii)
 $\Rightarrow \frac{dy}{dx} = \frac{1}{1+x^2}$
 $\Rightarrow (1+x^2)\frac{dy}{dx} = 1$
Again Differentiating w.r.t x
Using formula(iii)
 $(1+x^2)\frac{dy}{dx} + 2x\frac{dy}{dx} = 0$

Given: -

$$Y = \tan^{-1}x$$

Differentiating w.r.t x

$$\frac{dy}{dx} = \frac{d(tan^{-1}x)}{dx}$$

Using formula(ii)

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{1 + x^2}$$

$$\Rightarrow (1 + x^2) \frac{dy}{dx} = 1$$

Again Differentiating w.r.t x

Using formula(iii)

$$(1 + x^2)\frac{dy}{dx} + 2x\frac{dy}{dx} = 0$$

Hence proved.

27. Question

If y = {log (x +
$$\sqrt{x^2 + 1}$$
)², show that (1 + x^2) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 2$.

Answer

$$(i)\frac{dy}{dx}\,=\,y_1\,and\frac{d^2y}{dx^2}\,=\,y_2$$

$$(ii)\frac{d(logx)}{dx} = \frac{1}{x}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

$$y = \left[\log\left(x + \sqrt{1 + x^2}\right)\right]^2$$

Differentiating w.r.t x

$$\frac{dy}{dx} = \frac{d\left[\log(x + \sqrt{1 + x^2})\right]^2}{dx}$$

Using formula(ii)

$$\Rightarrow \frac{dy}{dx} = 2\log\Big(x + \sqrt{1 + x^2}\Big) \cdot \frac{1}{\left(x + \sqrt{1 + x^2}\right)} \cdot \left(1 + \frac{2x}{2\sqrt{1 + x^2}}\right)$$

Using formula(i)

$$\Rightarrow y_1 = \frac{2\log(x + \sqrt{1 + x^2})}{x + \sqrt{1 + x^2}} \cdot \frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}}$$

$$\Rightarrow y_1 = \frac{2\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}}$$

Squaring both sides

$$(y_1)^2 = \frac{4}{1+x^2} [\log(x+\sqrt{1+x^2})]$$

Differentiating w.r.t x

$$\Rightarrow (1 + x^2)y_2y_1 + 2x(y_1)^2 = 4y_1$$

Using formual(iii)

$$\Rightarrow (1 + x^2)y_2 + xy_1 = 2$$

Hence proved

28. Question

If
$$y = (\tan^{-1} x)^2$$
, then prove that $(1 - x^2)^2 y_2 + 2x (1 + x^2) y_1 = 2$

Answer

Formula: -

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$\frac{d(\tan^{-1} x)}{dx} = \frac{1}{1 + x^2}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

Given: -

$$Y = (\tan^{-1}x)^2$$

Then

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{d}(\tan^{-1}x)^2}{\mathrm{dx}}$$

Using formula (ii)&(i)

$$y_1 = 2 \tan^{-1} x \frac{dy}{dx} (\tan^{-1} x)$$

$$\Rightarrow y_1 = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2}$$

Again differentiating with respect to x on both the sides, we obtain

$$(1 + x^2)y_2 + 2xy_1 = 2\left(\frac{1}{1+x^2}\right)$$
 using formula(i)&(iii)

$$\Rightarrow (1 + x^2)^2 y_2 + 2x(1 + x^2) y_1 = 2$$

Hence proved.

29. Question

If y = cot x show that
$$\frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = 0$$

Answer

Formula: -

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

$$(ii)\frac{d(cotx)}{dx} = -cosec^2x$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

If
$$y = \cot x$$
 show that $\frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = 0$.

Answer

Formula: -

(i) $\frac{dy}{dx} = y_1$ and $\frac{d^2y}{dx^2} = y_2$

(ii) $\frac{d(\cot x)}{dx} = -\csc^2x$

(iii) $\frac{d}{dx}x^n = nx^{n-1}$

(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$

Given: -

$$Y = cotx$$

Differentiating w.r.t. x

$$\frac{dy}{dx} = \frac{d(cotx)}{dx}$$

Using formula (ii)

$$\Rightarrow \frac{dy}{dx} = -cosec^2x$$

Differentiating w.r.t x

$$\frac{d^2y}{dx^2} = -[2\cos(-\cos(-\cos(x))]$$

Using formual (iii)

$$\Rightarrow \frac{d^2y}{dx^2} = 2cosec^2xcotx$$

$$\Rightarrow \frac{d^2y}{dx^2} = -2\frac{dy}{dx}.y$$

$$\Rightarrow \frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = 0$$

Hence proved.

30. Question

Find
$$\frac{d^2y}{dx^2}$$
, where $y = log\left(\frac{x^2}{e^2}\right)$.

Answer

Formula: -

$$(i)\frac{dy}{dx}\,=\,y_1\,\text{and}\frac{d^2y}{dx^2}\,=\,y_2$$

$$(ii)\frac{d(e^{ax})}{dx} = ae^{ax}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

Given: -

$$y = log\left(\frac{x^2}{e^2}\right)$$

Differentiating w.r.t x

$$\frac{dy}{dx} = \frac{1}{\frac{x^2}{e^2}}.\frac{1}{e^2}2x \, = \, \frac{2}{x}$$

Again Differentiating w.r.t x

$$\frac{d^2y}{dx^2} = 2\left(-\frac{1}{x^2}\right) = -\frac{2}{x^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-2}{x^2}$$

31. Question

(iii)
$$\frac{d}{dx}x^n = nx^{n-1}$$

Given: -
$$y = log\left(\frac{x^2}{e^2}\right)$$
Differentiating w.r.t x
$$\frac{dy}{dx} = \frac{1}{\frac{x^2}{e^2}} \cdot \frac{1}{e^2} 2x = \frac{2}{x}$$
Again Differentiating w.r.t x
$$\frac{d^2y}{dx^2} = 2\left(-\frac{1}{x^2}\right) = -\frac{2}{x^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-2}{x^2}$$
31. Question
If $y = e^x(\sin x + \cos x)$ prove that $\frac{d^2y}{dx^2} - 1\frac{dy}{dx} + 2y = 0$.

Answer

Formula: -

$$(i)\frac{dy}{dx}\,=\,y_1\;\text{and}\frac{d^2y}{dx^2}\,=\,y_2$$

$$(ii)\frac{d(e^{ax})}{dx} = ae^{ax}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

Given: -

$$y = ae^{2x} + be^{-2x}$$

Differentiating w.r.t x

$$\frac{dy}{dx} = 2ae^{2x} + be^{(-x)}(-1)$$

$$\Rightarrow \frac{dy}{dx} = 2ae^{2x} - be^{-x}$$

Differentiating w.r.t x

$$\frac{d^2y}{dx^2} = 2ae^{2x}(2) - be^{-x}(-1)$$

$$\Rightarrow \frac{d^2y}{dx^2} = 4ae^{2x} + be^{-x}$$

Adding and subtracting be-x on RHS

$$\frac{d^2y}{dx^2} = 4ae^{2x} + 2be^{-x}$$

$$\Rightarrow \frac{d^2y}{dx^2} = 2(ae^{2x} + be^{-x}) + 2ae^{2x} - be^{-x}$$

$$\Rightarrow \frac{d^2y}{dx^2} = 2y + \frac{dy}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$

$$\frac{d^2y}{dx^2} = 2(ae^{2x} + be^{-x}) + 2ae^{2x} - be^{-x}$$

$$\Rightarrow \frac{d^2y}{dx^2} = 2y + \frac{dy}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0$$
32. Question

If $y = e^x (\sin x + \cos x)$ Prove that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$

Answer

Formula: -

(i) $\frac{dy}{dx} = y_1$ and $\frac{d^2y}{dx^2} = y_2$

(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

$$(ii)\frac{d(e^{ax})}{dx} = ae^{ax}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

Given: -

$$y = e^{x}(\sin x + \cos x)$$

differentiating w.r.t x

$$\frac{dy}{dx} = e^{x}(\cos x - \sin x) + (\sin x + \cos x)e^{x}$$

$$\Rightarrow \frac{dy}{dy} = y + e^{x}(\cos x - \sin x)$$

Differentiating w.r.t x

$$\frac{d^2y}{dx^2} = \frac{dy}{dx} + e^x(-\sin x - \cos x) + (\cos x - \sin x)e^x$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{dy}{dx} - y + (\cos x - \sin x)e^x$$

Adding and subtracting y on RHS

$$\frac{d^2y}{dx^2} = \frac{dy}{dx} - y + (\cos x - \sin x)e^x + y - y$$

$$\Rightarrow \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$

Hence proved

33. Question

If $y = \cos^{-1} x$, find $\frac{d^2y}{dx^2}$ in terms of y alone.

Answer

Formula: -

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$\frac{d(\cos^{-1}x)}{dx} = \frac{-1}{\sqrt{1+x^2}}$$

If
$$y = \cos^{-1} x$$
, find $\frac{d^2 y}{dx^2}$ in terms of y alone.

Answer

Formula: -

(i) $\frac{dy}{dx} = y_1$ and $\frac{d^2 y}{dx^2} = y_2$

(ii) $\frac{d(\cos^{-1} x)}{dx} = \frac{-1}{\sqrt{1+x^2}}$

(iii) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$

Given: $-y = \cos^{-1} x$

Then,

 $\frac{dy}{dx} = \frac{d(\cos^{-1} x)}{dx}$
 $\Rightarrow \frac{dy}{dx} = \frac{-1}{\sqrt{1+x^2}}$

Given: $-y = \cos^{-1}x$

Then,

$$\frac{dy}{dx} = \frac{d(\cos^{-1}x)}{dx}$$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-1}{\sqrt{1 + x^2}}$$

$$\Rightarrow \frac{d^2y}{dy^2} = \frac{d[-(\sqrt{1+x^2})]^{-1}}{dy}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-1.(1-x^2)^{-\frac{3}{2}}}{2} \cdot \frac{d(1-x^2)}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{1}{2\sqrt{(1-x^2)^3}}.(-2x)$$

$$\frac{d^2y}{dx^2} = \frac{-x}{\sqrt{(1-x^2)^3}}.....(i)$$

$$y = \cos^{-1} x$$

$$\Rightarrow x = \cos y$$

Putting x = cosy in equation(i), we obtain

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-\cos y}{\sqrt{(1-\cos^2 y)^3}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-cosy}{\sqrt{(sin^2y)^3}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-cosy}{sin^3 v}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-cosy}{siny} \cdot \frac{1}{sin^2y}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\text{coty.cosec}^2y$$

34. Question

If
$$y = e^{a \cos^{-1} x}$$
, prove that $(1-x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0$

Answer

Formula: -

(i) $\frac{dy}{dx} = y_1$ and $\frac{d^2 y}{dx^2} = y_2$

(ii) $\frac{d(\log x)}{dx} = \frac{1}{x}$

(ii) $\frac{d(\cos^{-1} x)}{dx} = \frac{-1}{\sqrt{1+x^2}}$

(iii) $\frac{d}{dx} x^n = nx^{n-1}$

(iv) chain rule $\frac{df}{dy} = \frac{d(wou)}{dt} \cdot \frac{dt}{dy} = \frac{dw}{ds} \cdot \frac{dt}{dt}$

Answer

Formula: -

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

$$(ii)\frac{d(logx)}{dx} = \frac{1}{x}$$

$$(ii) \frac{d(cos^{-1}x)}{dx} = \frac{-1}{\sqrt{1 \, + \, x^2}}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(v)logarithms differentiation
$$\frac{dy}{dx} = y \left[\frac{v(x)}{u(x)} \cdot u'(x) + v'(x) \cdot \log[u(x)] \right]$$

Given: -

$$v = e^{a\cos^{-1}x}$$

Taking logarithm on both sides we obtain

$$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = a\frac{-1}{\sqrt{1-x^2}}$$

$$\frac{dy}{dx} = \frac{-ay}{\sqrt{1-x^2}}$$

By squaring both sides, wee obtain

$$\left(\frac{dy}{dx}\right)^2 \,=\, \frac{a^2y^2}{1-x^2}$$

$$\Rightarrow (1-x^2).\left(\frac{dy}{dx}\right)^2 = a^2y^2$$

$$\Rightarrow (1-x^2)\left(\frac{dy}{dx}\right)^2 = a^2y^2$$

Again differentiating both sides with respect to x, we obtain

$$\left(\frac{dy}{dx}\right)^2.\frac{d(1-x^2) \,+\, (1-x^2)}{dx}.\frac{d}{dx}\left[\left(\frac{dy}{dx}\right)^2\right] \,=\, a^2\frac{d(y^2)}{dx}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^{2} [(-2x) + (1-x^{2})] 2. \frac{dy}{dx}. \frac{d^{2}y}{dx^{2}} = a^{2}. 2y. \frac{dy}{dx}$$

$$\Rightarrow -x \frac{dy}{dx} + (1 - x^2) \frac{d^2y}{dx^2} = a^2y$$

$$\Rightarrow (1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$$

Hence proved

35. Question

If
$$y = 500 e^{7x} + 600 e^{-7x}$$
, show that $\frac{d^2y}{dx^2} = 49y$.

Answer

Formula: -

(i) $\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$

(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$

(iii) $\frac{d}{dx}x^n = nx^{n-1}$

Answer

Formula: -

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

$$(ii)\frac{d(e^{ax})}{dx} = ae^{ax}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

Given: -

$$y = 500e^{7x} + 600e^{-7x}$$

$$\frac{dy}{dx} \, = \, 500. \frac{d(e^{7x})}{dx} \, + \, 600. \frac{d(e^{-7x})}{dx}$$

$$\Rightarrow \frac{dy}{dx} = 500e^{7x} \cdot \frac{d(7x)}{dx} + 600 \cdot e^{7x} \cdot \frac{d(-7x)}{dx}$$

$$\Rightarrow \frac{dy}{dx} = 3500e^{7x} - 4200e^{-7x}$$

$$\Rightarrow \frac{dy}{dx} = 49(500e^{7x} + 600e^{-7x})$$

$$\Rightarrow \frac{dy}{dx} = 49y$$

Hence proved.

36. Question

If x = 2 cos t - cos 2t, y = 2 sin t - sin 2t, find $\frac{d^2y}{dv^2}$ at t = $\frac{\pi}{2}$.

Answer

Formula: -

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d}{dx}x^n = nx^{n-1}$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vi) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Given: -

 $x = 2\cos t - \cos 2t$
 $y = 2\sin t - \sin 2t$

differentiating w.r.t t

 $\frac{dy}{dx} = 2(-\sin t) - 2(-\sin 2t)$
 $\Rightarrow \frac{dy}{dt} = 2\cos t - 2\cos 2t$

Dividing both

 $\frac{dy}{dx} = \frac{2(\cos t - \cos 2t)}{2(\sin 2t - \sin t)}$

Differentiating w.r.t t

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Given: -

$$x = 2\cos t - \cos 2t$$

$$y = 2sint - sin2t$$

differentiating w.r.t t

$$\frac{dy}{dx} = 2(-sint) - 2(-sin2t)$$

$$\Rightarrow \frac{dy}{dt} = 2cost - 2cos2t$$

Dividing both

$$\frac{dy}{dx} = \frac{2(\cos t - \cos 2t)}{2(\sin 2t - \sin t)}$$

Differentiating w.r.t t

$$\Rightarrow \frac{d\frac{dy}{dx}}{dt} = \frac{(\sin 2t - \sin t)(-\sin t + 2\sin 2t) - (\cos t - \cos 2t)(2\cos 2t - \cos t)}{(\sin 2t - \sin t)^2}$$

Dividing

$$\frac{d^2y}{dx^2} = \frac{(sin2t-sint)(2sint-sint) - (cost-cos2t)(2cos2t-cost)}{2(sin2t-sint)^3}$$

Putting
$$t = \frac{\pi}{2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{1+2}{-2} = -\frac{3}{2}$$

37. Question

If $x = 4z^2 + 5$, $y = 6z^2 + 7z + 3$, find $\frac{d^2y}{dx^2}$.

Answer

Formula: -

$$(i)\frac{dy}{dx}\,=\,y_1\,and\frac{d^2y}{dx^2}\,=\,y_2$$

$$(ii)\frac{d}{dx}x^n = nx^{n-1}$$

(iii) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(iv) parameteric forms
$$\frac{dy}{dx} = \frac{dy}{dt}$$

Given: -

 $x = 4z^2 + 5$, $y = 6z^2 + 72 + 3$

Differentiating both w.r.t z

 $\frac{dx}{dz} = 8z + 0$
 $\Rightarrow \frac{dx}{dz} = \frac{12z + 7}{8z}$

and $\Rightarrow \frac{dy}{dz} = 12z + 7$

differentiating w.r.t z

 $\frac{d\left(\frac{dy}{dx}\right)}{dz} = 0 + \frac{7}{8}\left(\frac{-1}{z^2}\right)$

Dividing

 $\Rightarrow \frac{d^2y}{dx^2} = \frac{-7}{8z^2 \times 8z} = \frac{-7}{64z^3}$

Given: -

$$x = 4z^2 + 5, y = 6z^2 + 72 + 3$$

Differentiating both w.r.t z

$$\frac{\mathrm{dx}}{\mathrm{dz}} = 8z + 0$$

$$\Rightarrow \frac{dx}{dz} = \frac{12z + 7}{8z}$$

and
$$\Rightarrow \frac{dy}{dz} = 12z + 7$$

differentiating w.r.t z

$$\frac{d\left(\frac{dy}{dx}\right)}{dz} = 0 + \frac{7}{8}\left(\frac{-1}{z^2}\right)$$

$$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{-7}{8z^2 \times 8z} = \frac{-7}{64z^3}$$

38. Question

If y = log (1 + cos x), prove that
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} \cdot \frac{dy}{dx} = 0$$

Answer

$$(i)\frac{dy}{dx}\,=\,y_1\,\text{and}\frac{d^2y}{dx^2}\,=\,y_2$$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d}{dx}x^n = nx^{n-1}$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

$$Y = log(1 + cosx)$$

Differentiating w.r.t x

$$\frac{dy}{dx} = \frac{1}{1 + \cos x} \cdot (-\sin x)$$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-\sin x}{1 + \cos x}$$

Differentiating w.r.t.x

$$\frac{d^2 y}{dx^2} = -\left[\frac{(1 + \cos x)\cos x - \sin x(-\sin x)}{(1 + \cos x)^2}\right]$$

$$\Rightarrow \frac{d^2 y}{dx^2} = -\left[\frac{(\cos x) + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}\right]$$

$$\Rightarrow \frac{d^2 y}{dx^2} = -\left[\frac{1 + \cos x}{(1 + \cos x)^2}\right]$$

$$\Rightarrow \frac{d^2 y}{dx^2} = -\frac{1}{1 + \cos x}$$

$$\frac{d^3y}{dx^3} = -\left(\frac{1}{(1 + \cos x)^2} \times -\sin x\right)$$

$$\frac{d^2 y}{dx^2} = -\left[\frac{(\cos x) + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}\right]$$

$$\Rightarrow \frac{d^2 y}{dx^2} = -\left[\frac{1 + \cos x}{(1 + \cos x)^2}\right]$$

$$\Rightarrow \frac{d^2 y}{dx^2} = -\frac{1}{1 + \cos x}$$
Differentiating w.r.t x
$$\frac{d^3 y}{dx^3} = -\left(\frac{1}{(1 + \cos x)^2} \times -\sin x\right)$$

$$\Rightarrow \frac{d^3 y}{dx^3} = -\left(\frac{-\sin x}{1 + \cos x}\right) \times \left(\frac{-1}{1 + \cos x}\right)$$

$$\Rightarrow \frac{d^3 y}{dx^3} = -\frac{dy}{dx} \cdot \frac{d^2 y}{dx^2}$$

$$\Rightarrow \frac{d^3 y}{dx^3} + \frac{dy}{dx} \cdot \frac{d^2 y}{dx^2} = 0$$
39. Question

$$\Rightarrow \frac{d^3y}{dx^3} = -\frac{dy}{dx} \cdot \frac{d^2y}{dx^2}$$

$$\Rightarrow \frac{d^3y}{dx^3} + \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} = 0$$

If y = sin (log x), prove that
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$$

Answer

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

$$(ii)\frac{d(logx)}{dx} = \frac{1}{x}$$

(iii)
$$\frac{d}{dx}\cos x = \sin x$$

(iv)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(v)\frac{d}{dx}x^n = nx^{n-1}$$

(vi) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

$$y = \sin(\log x)$$

$$\frac{dy}{dx} = \cos(\log x) \frac{1}{x}$$

$$\Rightarrow x \frac{dy}{dx} = \cos(\log x)$$

$$\Rightarrow x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = -\sin(\log x) \frac{1}{x}$$

$$\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$$

$$\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$$

$$\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$$

$$\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$$
Hence proved.

40. Question

If $y = 3 e^{2x} + 2 e^{3x}$, prove that $\frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} + 6y = 0$.

Answer

Formula: -

(i) $\frac{dy}{dx} = y_1$ and $\frac{d^2y}{dx^2} = y_2$

(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$

(iii) $\frac{d}{dx}x^n = nx^{n-1}$

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

$$(ii)\frac{d(e^{ax})}{dx} = ae^{ax}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

Given: -

$$y = 3e^{2x} + 2e^{3x}$$

$$\Rightarrow \frac{dy}{dx} = 6e^{2x} + 6e^{3x}$$

$$\Rightarrow \frac{d^2y}{dx^2} = 12e^{2x} + 18e^{3x}$$

Hence

$$\Rightarrow \frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 6(2e^{2x} + 3e^{3x}) - 30(e^{2x} + e^{3x}) + 6(3e^{2x} + 2e^{3x})$$

41. Question

If $y = (\cot^{-1} x)^2$, prove that $y_2(x^2 + 1)^2 + 2x(x^2 + 1)y_1 = 2$.

Answer

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$\frac{d}{dx} \cot^{-1} x = \frac{-1}{1 + x^2}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

Given: -

$$y = (\cot^{-1}x)^2$$

differentiating w.r.t x

$$\frac{dy}{dx} \, = \, y_1 \, = \, 2 \, \text{cot}^{-1} x. \Big[\frac{-1}{1 \, + \, x^2} \Big]$$

$$\Rightarrow y_1 = \frac{-2 \cot^{-1} x}{1 + x^2}$$

Differentiating w.r.t x

$$\Rightarrow (1 + x^2)y_2 + 2xy_1 = 2\left(\frac{1}{1 + x^2}\right)$$

$$\Rightarrow (1 + x^2)^2 y_2 + 2x(1 + x^2)y_1 = 2$$

Hence proved

42. Question

If
$$y = \cos ec^{-1}x$$
, $x > 1$, then show that $x(x^2 - 1)\frac{d^2y}{dx^2} + (2x^2 - 1)\frac{dy}{dx} = 0$

Answer

Formula: -

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

$$(ii)\frac{d(cosec^{-1}x)}{dx} = \frac{-1}{|x|\sqrt{x^2 - 1}}$$

$$(iii)\frac{d}{dx}x^n = nx^{n-1}$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

Given: -

$$Y = cosec^{-1}x$$

We know that

$$\frac{d(\mathsf{cosec}^{-1}x)}{dx} = \frac{-1}{|x|\sqrt{x^2 - 1}}$$

Let $v = \csc^{-1}x$

$$\frac{dy}{dx} = \frac{-1}{|x|\sqrt{x^2-1}}$$

Since x>1, |x| = x

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-1}{x\sqrt{x^2 - 1}}$$

Differentiating the above function with respect to x

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{x\frac{2x}{2\sqrt{x^2-1}} + \sqrt{x^2-1}}{x^2(x^2-1)}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{x^2}{\sqrt{x^2 - 1}} + \sqrt{x^2 - 1}}{x^2(x^2 - 1)}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{x^2 + x^2 - 1}{x^2(x^2 - 1)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{2x^2 - 1}{x^2(x^2 - 1)^{\frac{3}{2}}}$$

Thus

$$x(x^2-1)\frac{d^2y}{dx^2} = \frac{2x^2-1}{x\sqrt{x^2-1}}....(2)$$

Similarly

$$\Rightarrow [2x^2 - 1] \frac{dy}{dx} = \frac{-2x^2 + 1}{x\sqrt{x^2 - 1}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{x^2}{\sqrt{x^2 - 1}} + \sqrt{x^2 - 1}}{x^2(x^2 - 1)}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{x^2 + x^2 - 1}{x^2(x^2 - 1)^{\frac{3}{2}}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{2x^2 - 1}{x^2(x^2 - 1)^{\frac{3}{2}}}$$
Thus
$$x(x^2 - 1)\frac{d^2y}{dx^2} = \frac{2x^2 - 1}{x\sqrt{x^2 - 1}}.....(2)$$
Similarly
$$\Rightarrow [2x^2 - 1]\frac{dy}{dx} = \frac{-2x^2 + 1}{x\sqrt{x^2 - 1}}$$

$$\Rightarrow x(x^2 - 1)\frac{d^2y}{dx^2} + [2x^2 - 1]\frac{dy}{dx} = \frac{2x^2 - 1}{x\sqrt{x^2 - 1}} + \frac{-2x^2 + 1}{x\sqrt{x^2 - 1}} = 0$$

Hence proved.

43. Question

If
$$x = \cos t + \log \tan \frac{t}{2}$$
, $y = \sin t$, then find the value of $\frac{d^2y}{dt^2}$ and $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{4}$.

Answer

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} sinx = -cosx$$

$$(iv)\frac{d}{dx}logx = \frac{1}{x}$$

$$(v)\frac{d}{dx}tanx = sec^2x$$

$$(vi)\frac{d}{dx}x^n = nx^{n-1}$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$x = cost + log tan \frac{t}{2}, y = sint$$

Differentiating with respect to t, we have

$$\frac{dx}{dt} \, = \, -sint \, + \, \frac{1}{tan} \frac{t}{2} \times sec^2 \bigg(\frac{t}{2} \bigg) \times \frac{1}{2}$$

Differentiating with respect to t, we have
$$\frac{dx}{dt} = -\sin t + \frac{1}{\tan \frac{t}{2}} \times \sec^2 \left(\frac{t}{2}\right) \times \frac{1}{2}$$

$$\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{\frac{\sin \left(\frac{t}{2}\right)}{\cos \left(\frac{t}{2}\right)}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2}$$

$$\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{2\sin \left(\frac{t}{2}\right)\cos \left(\frac{t}{2}\right)}$$

$$\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{\sin t}$$

$$\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{\sin t}$$

$$\Rightarrow \frac{dx}{dt} = \frac{1 - \sin^2 t}{\sin t}$$

$$\Rightarrow \frac{dx}{dt} = \frac{\cos^2 t}{\sin t}$$

$$\Rightarrow \frac{dx}{dt} = \cos t \cot t$$

$$\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{2\sin(\frac{t}{2})\cos(\frac{t}{2})}$$

$$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}} = -\mathrm{sint} + \frac{1}{\mathrm{sint}}$$

$$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}} = \frac{1 - \sin^2 t}{\sin t}$$

$$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}} = \frac{\cos^2 t}{\sin t}$$

$$\Rightarrow \frac{dx}{dt} = \text{cost.cott}$$

Now find the value of $\frac{dy}{dt}$

$$\frac{dy}{dt} = \cos t$$

Now

$$\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$\Rightarrow \frac{dy}{dx} = cost \times \frac{1}{cost.cott}$$

$$\Rightarrow \frac{dy}{dx} = tant$$

We have

$$\frac{dy}{dt} = cost$$

Differentiating with w.r.t t

$$\frac{d^2y}{dt^2} = -\sin t$$

At
$$t = \frac{\pi}{4}$$

$$\left(\frac{d^2y}{dt^2}\right)_{t=\frac{\pi}{2}} \,=\, -\sin\!\left(\!\frac{\pi}{4}\!\right) \,=\, -\frac{1}{\sqrt{2}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(tant)}{cost.cott}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\sec^2t}{\cos t.\cot t}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\sec^2t}{\cos^2t}. \sin t$$

$$\Rightarrow \frac{d^2y}{dx^2} = \sec^4 t \times \sin t$$

Now putting
$$t = \frac{\pi}{4}$$

$$\left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{4}} = \ sec^4\frac{\pi}{4}.sin\left(\frac{\pi}{4}\right) \ = \ 2$$

44. Question

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(tant)}{cost.cott}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{sec^2t}{cost.cott}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{sec^2t}{cos^2t}.sint$$

$$\Rightarrow \frac{d^2y}{dx^2} = sec^4t \times sint$$
Now putting $t = \frac{\pi}{4}$

$$\left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{4}} = sec^4\frac{\pi}{4}.sin\left(\frac{\pi}{4}\right) = 2$$
44. Question

If $x = a \sin t$ and $y = a \left(\cos t + \log tan \frac{t}{2}\right)$, find $\frac{d^2y}{dx^2}$.

Answer

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d}{dx}x^n = nx^{n-1}$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$x = atsint and y = a \left(cost + log tan \left(\frac{t}{2} \right) \right)$$

$$\frac{dx}{dt} = acost$$

$$\Rightarrow \frac{d^2y}{dt^2} = -asint$$

$$\Rightarrow \frac{dy}{dt} = -asint + \frac{a}{tan(\frac{t}{2})} \times sec^2 \frac{t}{2} \times \frac{1}{2}$$

$$\Rightarrow \frac{dy}{dt} = -asint + \frac{a}{2 \sin(\frac{t}{2}) \cos(\frac{t}{2})}$$

$$\Rightarrow \frac{dy}{dt} = -asint + acosect$$

$$\Rightarrow \frac{d^2y}{dt^2} = -acost - acosectcott$$

$$\frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

$$\frac{dy}{dt} = -asint + acosect$$

$$\Rightarrow \frac{d^2y}{dt^2} = -acost - acosectcott$$

$$\frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{acost(-acost - acosectcott) - (-asint + acosect)(-asint)}{(acost)^3}$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{-a^{2}(\cos^{2}t + \sin^{2}t) - a^{2}\cot^{2}t + a^{2}}{a^{3}\cos^{3}t}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{1}{asin^2\,t\,cost}$$

45. Question

If x = a (cos t + t sin t) and y = a (sin t - t cos t), then find the value of $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{4}$

Answer

$$(i)\frac{dy}{dx}\,=\,y_1\,and\frac{d^2y}{dx^2}\,=\,y_2$$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx}$$
 sinx = $-\cos x$

$$(iv)\frac{d}{dx}x^n = nx^{n-1}$$

(v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Given: -

$$x = a(\cos t + t \sin t)$$
 and $y = a(\sin t - t \cos t)$

$$\frac{dy}{dt}$$
 = acost - acost + atsint = atsint

$$\Rightarrow \frac{d^2y}{dt^2} = atcost + asint$$

$$\Rightarrow \frac{dx}{dt} = -asint + atcost + asint = atcost$$

$$\Rightarrow \frac{d^2x}{dt^2} = -atsint + acost$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\text{atcost(atcost} + \text{asint)} - (-\text{atsint} + \text{acost)(atsint)}}{(\text{acost})^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{1}{(atcost)^3}$$

Putting
$$t = \frac{\pi}{4}$$

$$\left(\!\frac{d^2y}{dx^2}\!\right)_{\!t\,=\,\frac{\pi}{4}} = \,\frac{1}{a\,cos^3\frac{\pi}{4}.\,a\,\frac{\pi}{4}} = \,\frac{8\sqrt{2}}{\pi a}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -atsint + acost$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt} - \frac{dy}{dt}\frac{d^2x}{dt}}{\left(\frac{dx}{dt}\right)^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{atcost(atcost + asint) - (-atsint + acost)(atsint)}{(acost)^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{1}{(atcost)^3}$$
Putting $t = \frac{\pi}{4}$

$$\left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{4}} = \frac{1}{a\cos^3\frac{\pi}{4} \cdot a\frac{\pi}{4}} = \frac{8\sqrt{2}}{\pi a}$$
46. Question
If $x = a\left(\cos t + \log \tan \frac{t}{2}\right)$, $y = a\sin t$, evaluate $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{3}$
Answer
Formula: -

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d}{dv}x^n = nx^{n-1}$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$x = a(\cos t + \log \tan \frac{t}{2}), y = \sin t$$

Differentiating with respect to t, we have

$$\Rightarrow \frac{dx}{dt} = -asint + a \frac{1}{tan \frac{t}{2}} \times sec^2 \left(\frac{t}{2}\right) \times \frac{1}{2}$$

$$\Rightarrow \frac{dx}{dt} = -asint + a \frac{1}{\frac{\sin\left(\frac{t}{2}\right)}{\cos\left(\frac{t}{2}\right)}} \times \frac{1}{\cos^2\frac{t}{2}} \times \frac{1}{2}$$

$$\Rightarrow \frac{dx}{dt} = -asint + a \frac{1}{2 \sin(\frac{t}{2}) \cos(\frac{t}{2})}$$

$$\Rightarrow \frac{dx}{dt} = -asint + a\frac{1}{sint} = -asint + acosect$$

Now find the value of $\frac{dy}{dt}$

$$\frac{dy}{dt} = acost$$

$$\Rightarrow \frac{d^2y}{dt^2} = -asint$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

$$\Rightarrow \frac{dx}{dt} = -asint + a \frac{1}{2 \sin(\frac{t}{2}) \cos(\frac{t}{2})}$$

$$\Rightarrow \frac{dx}{dt} = -asint + a \frac{1}{sint} = -asint + acosect$$

Now find the value of $\frac{dy}{dt}$

$$\frac{dy}{dt} = acost$$

$$\Rightarrow \frac{d^2y}{dt^2} = -asint$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-asint(-asint + acosect) - (-acost - acosectcott)(-acost)}{(acosect - asint)^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{a^2\left(\cos^2t \,+\, \sin^2t\right) \,+\, a^2\cot^2t - a^2}{(acosect - asint)^3}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{sint}{acos^4t}$$

$$\left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{2}} = \frac{\sin\frac{\pi}{3}}{acos^4\frac{\pi}{3}} = \frac{8\sqrt{3}}{a}$$

47. Question

If x = a (cos 2t + 2t sin 2t) and y = a (sin 2t - 2t cos 2t), then find
$$\frac{d^2y}{dx^2}$$

Answer

$$(i)\frac{dy}{dx}\,=\,y_1\;\text{and}\frac{d^2y}{dx^2}\,=\,y_2$$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d}{dx}x^n = nx^{n-1}$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$x = a (\cos 2t + 2t \sin 2t)$$

$$\Rightarrow \frac{dx}{dt} = -2a\sin 2t + 2a\sin 2t + 4at\cos 2t = 4at\cos 2t$$

and
$$y = a (\sin 2t - 2t \cos 2t)$$

$$\Rightarrow \frac{dy}{dt} = 2a\cos 2t - 2a\cos 2t + 4at\sin 2t = 4at\sin 2t$$

$$\Rightarrow \frac{dy}{dx} = \frac{dt}{dx} \times \frac{dy}{dt} = \frac{\sin 2t}{\cos 2t} = \tan 2t$$

$$\Rightarrow \frac{d^2 y}{dy^2} = \frac{d(\tan 2t)}{dy}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = \sec^2 2t \frac{d(2t)}{dx}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = 2 \sec^2 2t \frac{d(t)}{dx}$$

$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{\sec^3 2t}{2a}$$

$$x = a (\cos 2t + 2t \sin 2t)$$

$$\Rightarrow \frac{dx}{dt} = -2a\sin 2t + 2a\sin 2t + 4at\cos 2t = 4at\cos 2t$$
and $y = a (\sin 2t - 2t \cos 2t)$

$$\Rightarrow \frac{dy}{dt} = 2a\cos 2t - 2a\cos 2t + 4at\sin 2t = 4at\sin 2t$$

$$\Rightarrow \frac{dy}{dx} = \frac{dt}{dx} \times \frac{dy}{dt} = \frac{\sin 2t}{\cos 2t} = \tan 2t$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d(\tan 2t)}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \sec^2 2t \frac{d(2t)}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = 2\sec^2 2t \frac{d(t)}{dx}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{\sec^3 2t}{2a}$$
48. Question

If $x = 3 \cot t - 2 \cos^3 t$, $y = 3 \sin t - 2 \sin^3 t$, find $\frac{d^2y}{dx^2}$.

Answer

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d(cotx)}{dx} = -cosec^2x$$

$$(v)\frac{d}{dx}x^n = nx^{n-1}$$

(vi) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vii)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

given: -

$$x = 3 \cot t - 2 \cos^3 t$$
, $y = 3 \sin t - 2 \sin^3 t$

differentiating both w.r.t t

$$\frac{dx}{dt} = -3sint - 6cos^2t(-sint)$$

$$\frac{dx}{dt} = -3\sin t + 6\cos^2 t \sin t$$

And
$$y = 3\sin t - 2\sin^3 t$$

differentiating both w.r.t t

$$\frac{\mathrm{dy}}{\mathrm{dt}} = 3\mathrm{cost} - 6\sin^2 t \cos t$$

Now,

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos t - 2\sin^2 t \cos t}{-\sin t + 2\cos^2 t \sin t}$$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{cost}[1 - 2\sin^2 t]}{\mathrm{sint}[2\cos^2 t - 1]}$$

$$\Rightarrow \frac{dy}{dx} = \cot t$$

differentiating both w.r.t x

$$\frac{d^2 y}{dx^2} = \frac{d(cotx)}{dx} = -cosec^2 x$$

49. Question

If x = a sin t - b cos t, y = a cos t + b sin t, prove that
$$\frac{d^2y}{dx^2} = -\frac{x^2 + y^2}{v^3}.$$

Answer

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d}{dx}x^n = nx^{n-1}$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$x = asint - bcost, y = accost + bsint$$

differentiating both w.r.t t

$$\frac{dx}{dt} = acost + bsint \frac{dy}{dt} = -asint + bcost$$

$$\Rightarrow \frac{dx}{dt} = y, \Rightarrow \frac{dy}{dt} = x$$

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{dy}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}} = -\frac{\mathrm{x}}{\mathrm{y}}$$

$$\Rightarrow \frac{d\left(\frac{dy}{dx}\right)}{dt} = -\frac{\{y^2 + x^2\}}{v^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{\{y^2 + x^2\}}{y^2.y} = -\frac{\{x^2 + y^2\}}{y^3}$$

Hence proved.

50. Question

Find A and B so that y = A sin 3x + Bcos 3x satisfies the equation
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 10 \cos 3x$$
.

Answer

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

(iv) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

y = Asin3x + Bcos3x

differentiating w.r.t x

$$\frac{dy}{dx} = 3Axos3x + 3B(-sin3x)$$

Again differentiating w.r.t x

$$\frac{d^2y}{dx^2} = 3A(-\sin 3x).3 - 3B(\cos 3x).3$$

$$\Rightarrow \frac{d^2y}{dx^2} = -9(A\sin 3x + B\cos 3x) = -9y$$

Now adding

$$\frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y$$

$$\Rightarrow \frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = -9y + 4(3A\cos 3x - 3B\sin 3x) + 3y$$

Now adding
$$\frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y$$

$$\Rightarrow \frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = -9y + 4(3A\cos 3x - 3B\sin 3x) + 3y$$

$$\Rightarrow \frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = 12(A\cos 3x - b\sin 3x) - 6(A\sin 3x + B\cos 3x)$$

$$\Rightarrow \frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = (12A - 6B)\cos 3x - (12B + 6A)\sin 3x$$

But given,

$$\frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = 10\cos 3x$$

$$\Rightarrow$$
 - $(12B + 6A) = 0$

Puttuing A

$$\Rightarrow 12(-2B) - 63 = 10$$

$$\Rightarrow -24B - 6B = 10$$

$$\Rightarrow B = -\frac{1}{3}$$

$$A = -2 \times -\frac{1}{3} = \frac{2}{3}$$

And
$$A = \frac{2}{3}B = -\frac{1}{3}$$

51. Question

If y = A e^{-kt} cos (pt + c), prove that $\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + n^2y = 0$, where $n^2 = p^2 + k^2$.

Answer

Formula: -

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

$$(ii)\frac{d}{dx}e^{ax} = ae^{ax}$$

(iii)
$$\frac{d}{dx}\cos x = \sin x$$

(iv)
$$\frac{d}{dx} \sin x = -\cos x$$

(v) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$y = A e^{-kt} cos (pt + c)$$

(vi)parameteric forms
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}}$$

Given: -

 $y = A e^{-kt} \cos(pt + c)$

Differentiating w.r.t t

 $\frac{dy}{dt} = A \left(e^{-kt} (-\sin(pt + c) \cdot p) + (\cos(pt + c)) (-re^{-kt}) \right)$
 $\Rightarrow \frac{dy}{dt} = -Ape^{-kt} (pt + c) - kAe^{-kt} \cos(pt + c)$
 $\Rightarrow \frac{dy}{dt} = -Ape^{-kt} \sin(pt + c) - ky$

Differentiating w.r.t t

 $\frac{d^2y}{dt^2} = Apke^{-kt} \sin(pt + c) - p^2y - 2ky_1 + ky_1$
 $\Rightarrow \frac{d^2y}{dt} = Apke^{-kt} \sin(pt + c) - p^2y - 2ky_2 - kApe^{-kt} \sin(pt + c) - k^2y_2$

$$\Rightarrow \frac{dy}{dt} = -Ape^{-kt}(pt + c) - kAe^{-kt}\cos(pt + c)$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = -\mathrm{Ape}^{-\mathrm{k}t}\sin(\mathrm{pt} + \mathrm{c}) - \mathrm{ky}$$

$$\frac{d^2y}{dt^2}$$
 = Apke^{-kt}sin(pt + c) - p²y - 2ky₁ + ky₁

$$\Rightarrow \frac{d^2y}{dt^2} = Apke^{-kt}\sin(pt + c) - p^2y - 2ky_1 - kApe^{-kt}\sin(pt + c) - k^2y$$

$$\Rightarrow \frac{d^2y}{dt^2} = -(p^2 + k^2)y - 2k\frac{dy}{dx}$$

$$\Rightarrow \frac{d^2y}{dt^2} + 2k\frac{dy}{dx} + n^2y = 0$$

Hence proved

52. Question

Answer

Formula: -

$$(i)\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2$$

(ii)
$$\frac{d}{dx}\cos x = \sin x$$

(iii)
$$\frac{d}{dx} \sin x = -\cos x$$

$$(iv)\frac{d(logx)}{dx} = \frac{1}{x}$$

$$(v)\frac{d}{dx}x^n = nx^{n-1}$$

(vi) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

Given: -

 $y = x^{n}(acos(logx) + bsin(logx))$

$$\Rightarrow$$
y = axⁿcos(logx) + bxⁿsin(logx)

$$\Rightarrow y = ax^{n}cos(logx) + bx^{n}sin(logx)$$

$$\frac{dy}{dx} = anx^{n-1}cos(logx) - ax^{n-1}sin(logx) + bx^{n-1}sinlogx + bx^{n-1}coslogx$$

$$\Rightarrow \frac{dy}{dx} = x^{n-1}coslogx(na + b) + x^{n-1}sin(logx)(bn - a)$$

$$\Rightarrow \frac{dy}{dx} = x^{n-1} \cos\log x (na + b) + x^{n-1} \sin(\log x) (bn - a)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx} \left(x^{n-1} \cos(\log x) (na + b) + x^{n-1} \sin(\log x) (bn - a) \right)$$

$$\begin{split} \Rightarrow \frac{d^2y}{dx^2} = & \;\; (na \; + \; b)[(n-1)x^{n-2}\cos(\log x) - x^{n-2}\sin(\log x)] \\ & + \;\; (bn-a)[(n-1)x^{n-2}\sin(\log x) + x^{n-2}\cos(\log x)] \end{split}$$

$$x^2 \frac{d^2y}{dx^2} + (1-2n)\frac{dy}{dx} + (1+n^2)y$$

 $= x^{n} (na + b)[(n - 1) \cos(\log x) - \sin(\log x)] + (bn - a) x^{n} [(n - 1) \sin(\log x) + \cos(\log x)] + (1 - 2n)x^{n - 1} \cos(\log x)(na + b) + (1 - 2n)x^{n - 1} \sin(\log x)(bn - a) + a(1 + n^{2})x^{n} \cos(\log x) + bx^{n}(1 + n^{2})\sin(\log x)$

$$\Rightarrow x^{2} \frac{d^{2}y}{dx^{2}} + (1 - 2n) \frac{dy}{dx} + (1 + n^{2})y = 0$$

53. Question

If
$$y = a \{x + \sqrt{x^2 + 1}\}^n + b\{x - \sqrt{x^2 + 1}\}^{-n}$$
, prove that $(x^2 - 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} - n^2 = 0$.

Answer

(i)
$$\frac{dy}{dx} = y_1$$
 and $\frac{d^2y}{dx^2} = y_2$

$$(ii)\frac{d}{dx}x^n = nx^{n-1}$$

(iii) chain rule
$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

$$y = a \{x + \sqrt{x^2} + 1\}^n + b \{x - \sqrt{x^2} + 1\}^{-n}$$

$$\begin{split} \frac{dy}{dx} &= \, na\{x \, + \, x^2 \, + \, 1\}^{n-1} \left[1 \, + \, x(x^2 \, + \, 1)^{-\frac{1}{2}}\right] \\ &- nb\left\{x - \sqrt{x^2 \, + \, 1}\right\}^{-n-1} \left[1 - x(x^2 \, + \, 1)^{-\frac{1}{2}}\right] \end{split}$$

$$\Rightarrow \frac{dy}{dx} = \frac{na\{x + x^2 + 1\}^n}{\sqrt{x^2 + 1}} + \frac{nb\{x + x^2 + 1\}^{-n}}{\sqrt{x^2 + 1}}$$

$$\Rightarrow \frac{xdy}{dx} = \frac{nx}{\sqrt{x^2 + 1}}y$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{nx}{\sqrt{x^2 + 1}} \frac{dy}{dx} + y \left[\frac{\sqrt{x^2 + 1} - x^2(x^2 + 1)^{-\frac{1}{2}}}{x^2 + 1} \right]$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{n^2x^2}{x^2 + 1} + y \left[\frac{1}{(x^2 + 1)\sqrt{x^2 + 1}} \right]$$

$$\Rightarrow (x^2 - 1)\frac{d^2y}{dx^2} = \frac{n^2x^4(\sqrt{x^2 + 1}) + x^2y}{x^2 + 1\sqrt{x^2 + 1}} - \frac{n^2x^2(\sqrt{x^2 + 1}) + y}{x^2 + 1(\sqrt{x^2 + 1})}$$

Now

$$\Rightarrow (x^{2} - 1)\frac{d^{2}y}{dx^{2}} + \frac{xdy}{dx} - ny$$

$$= \frac{n^{2}x^{4}(\sqrt{x^{2} + 1}) + x^{2}y}{(x^{2} + 1)\sqrt{x^{2} + 1}} - \frac{n^{2}x^{2}(\sqrt{x^{2} + 1}) + y}{(x^{2} + 1)(\sqrt{x^{2} + 1})} - ny = 0$$

1 A. Question

Find the second order derivatives of each of the following functions:

$$x^3$$
 + tan x

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

com

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

 $\sqrt{\text{Apart}}$ from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,
$$y = x^3 + \tan x$$

We have to find $\frac{d^2y}{dx^2}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find $\frac{dy}{dx}$ and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 + \tan x) = \frac{d}{dx}(x^3) + \frac{d}{dx}(\tan x)$$

$$[\because \frac{d}{dx}(\tan x) = \sec^2 x \& \frac{d}{dx}(x^n) = nx^{n-1}]$$

$$=3x^2+\sec^2 x$$

$$\frac{dy}{dx} = 3x^2 + \sec^2 x$$

Differentiating again with respect to x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(3x^2 + \sec^2 x\right) = \frac{d}{dx}(3x^2) + \frac{d}{dx}(\sec^2 x)$$

$$\frac{d^2y}{dx^2} = 6x + 2 \sec x \sec x \tan x$$

[differentiated $\sec^2 x$ using chain rule, let $t = \sec x$ and $z = t^2$: $\frac{dz}{dx} = \frac{dz}{dx} \times \frac{dt}{dx}$

$$\frac{d^2y}{dx^2} = 6x + 2\sec^2x\tan x$$

1 B. Question

Find the second order derivatives of each of the following functions:

sin (log x)

Answer

 $\sqrt{\text{Basic Idea}}$: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{\text{The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. <math>f = v(u(x))$. For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

 $\sqrt{\text{Apart}}$ from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,
$$y = \sin(\log x)$$

We have to find $\frac{d^2y}{dx^2}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx}(\sin(\log x))$$

differentiating sin (logx) using the chain rule,

let, t = log x and y = sin t

$$\because \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} \text{ [using chain rule]}$$

$$\frac{dy}{dx} = \cos t \times \frac{1}{x}$$

$$\frac{dy}{dx} = \cos(\log x) \times \frac{1}{x} \left[\because \frac{d}{dx} (\log x) = \frac{1}{x} & \frac{d}{dx} (\sin x) = \cos x \right]$$

Differentiating again with respect to x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\cos(\log x) \times \frac{1}{x}\right)$$

$$\frac{d^2y}{dx^2} = \cos(\log x) \times \frac{-1}{x^2} + \frac{1}{x} \times \frac{1}{x} (-\sin(\log x))$$

[using product rule of differentiation]

$$= \frac{-1}{x^2} \cos(\log x) - \frac{1}{x^2} \sin(\log x)$$

$$\frac{d^2y}{dx^2} = \frac{-1}{x^2}\cos(\log x) - \frac{1}{x^2}\sin(\log x)$$

1 C. Question

Find the second order derivatives of each of the following functions:

log (sin x)

Answer

 $\sqrt{\text{Basic Idea: Second order derivative is nothing but derivative of derivative i.e.} \frac{d^2y}{dx^2} = \frac{d}{dx} (\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, y = log (sin x)

We have to find $\frac{d^2y}{dx^2}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx} (\log(\sin x))$$

differentiating sin (logx) using cthe hain rule,

let, $t = \sin x$ and $y = \log t$

$$\because \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} \text{ [using chain rule]}$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \cos x \times \frac{1}{\mathrm{t}}$$

$$[\because \frac{d}{dx} \log x = \frac{1}{x} \& \frac{d}{dx} (\sin x) = \cos x]$$

$$\frac{dy}{dx} = \frac{\cos x}{\sin x} = \cot x$$

Differentiating again with respect to x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx} (\cot x)$$

$$\frac{d^2y}{dx^2} = -\csc^2x \left[\frac{d}{dx} \cot x = -\csc^2x \right]$$

$$\frac{d^2y}{dx^2} = -\csc^2x$$

1 D. Question

Find the second order derivatives of each of the following functions:

e^x sin 5x

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{\text{The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)$

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = e^x \sin 5x$

We have to find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx} (e^x \sin 5x)$$

Let $u = e^x$ and $v = \sin 5x$

As,
$$y = uv$$

: Using product rule of differentiation:

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$\frac{dy}{dx} = e^{x} \frac{d}{dx} (\sin 5x) + \sin 5x \frac{d}{dx} e^{x}$$

$$\frac{dy}{dx} = 5e^{x}\cos 5x + e^{x}\sin 5x$$

 $[: \frac{d}{dx} (\sin ax) = a \cos ax$, where a is any constant $\& \frac{d}{dx} e^x = e^x]$

Again differentiating w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(5e^{x}\cos 5x + e^{x}\sin 5x\right)$$

$$= \frac{d}{dx} (5e^x \cos 5x) + \frac{d}{dx} (e^x \sin 5x)$$

Again using the product rule:

$$\frac{d^2y}{dx^2} = e^x \frac{d}{dx} (\sin 5x) + \sin 5x \frac{d}{dx} e^x + 5e^x \frac{d}{dx} (\cos 5x) + \cos 5x \frac{d}{dx} (5e^x)$$

$$\frac{d^2y}{dx^2} = 5e^x \cos 5x - 25e^x \sin 5x + e^x \sin 5x + 5e^x \cos 5x \ [\because \frac{d}{dx}(\cos ax) = -a \sin ax, a \text{ is any constant}]$$

$$\frac{d^2y}{dx^2} = 10e^x \cos 5x - 24e^x \sin 5x$$

1 E. Question

Find the second order derivatives of each of the following functions:

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{\text{The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)$

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,
$$y = e^{6x} \cos 3x$$

We have to find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx} (e^{6x} \cos 3x)$$

Let
$$u = e^{6x}$$
 and $v = \cos 3x$

As,
$$y = uv$$

: Using product rule of differentiation:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = e^{6x} \frac{d}{dx} (\cos 3x) + \cos 3x \frac{d}{dx} e^{6x}$$

$$\tfrac{dy}{dx} = -3e^{6x}\sin 3x + 6e^{6x}\cos 3x \ [\ \ \cdot \ \tfrac{d}{dx}(\cos ax) = -a\sin ax, a \text{ is any constant } \& \tfrac{d}{dx}e^{ax} = ae^x]$$

Again differentiating w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-3e^{6x}\sin 3x + 6e^{6x}\cos 3x\right)$$

$$= \frac{d}{dx} (-3e^{6x} \sin 3x) + \frac{d}{dx} (6e^{6x} \cos 3x)$$

Again using the product rule:

$$\frac{d^2y}{dx^2} = -3e^{6x}\frac{d}{dx}(\sin 3x) - 3\sin 3x\frac{d}{dx}e^{6x} + 6e^{6x}\frac{d}{dx}(\cos 3x) + \cos 3x\frac{d}{dx}(6e^{6x})$$

$$\frac{d^2y}{dx^2} = -9e^{6x}\cos 3x - 18e^{6x}\sin 3x - 18e^{6x}\sin 3x + 36e^{6x}\cos 3x$$

$$\frac{d^2y}{dx^2} = 27e^{6x}\cos 3x - 36e^{6x}\sin 3x$$

1 F. Question

Find the second order derivatives of each of the following functions:

$$x^3 \log x$$

Answer

 $\sqrt{\text{Basic Idea: Second order derivative is nothing but derivative of derivative i.e.} \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dy} = \frac{dv}{dt} \times \frac{dt}{dy}$$

$$\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,
$$y = x^3 \log x$$

We have to find $\frac{d^2y}{dx^2}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 \log x)$$

Let
$$u = x^3$$
 and $v = log x$

: Using product rule of differentiation:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = x^3 \frac{d}{dx} (\log x) + \log x \frac{d}{dx} x^3$$

$$\frac{dy}{dx} = 3x^2 \log x + \frac{x^3}{x}$$

$$[\because \frac{d}{dx}(\log x) = \frac{1}{x} \text{ and } \frac{d}{dx}(x^n) = nx^{n-1}]$$

Again differentiating w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(3x^2\log x + x^2)$$

$$= \frac{d}{dx} (3x^2 \log x) + \frac{d}{dx} (x^2)$$

Again using the product rule :

$$\frac{d^2y}{dx^2} = 3 logx \frac{d}{dx} x^2 + 3x^2 \frac{d}{dx} logx + \frac{d}{dx} x^2$$

$$[: \frac{d}{dx}(log x) = \frac{1}{x} \text{ and } \frac{d}{dx}(x^n) = nx^{n-1}]$$

$$\frac{d^2y}{dx^2} = 6x\log x + \frac{3x^2}{x} + 2x$$

$$\frac{d^2y}{dx^2} = 6x \log x + 5x$$

1 G. Question

Find the second order derivatives of each of the following functions:

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

 $\sqrt{\text{Apart}}$ from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,
$$y = \tan^{-1} x$$

We have to find $\frac{d^2y}{dx^2}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx} \left(tan^{-1} x \right) \left[\frac{d}{dx} \left(tan^{-1} x \right) = \frac{1}{1+x^2} \right]$$

Differentiating again with respect to x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(\frac{1}{1+x^2}\right)$$

Differentiating $\frac{1}{1+x^2}$ using chain rule,

let
$$t = 1 + x^2$$
 and $z = 1/t$

$$\because \frac{dz}{dx} = \frac{dz}{dt} \times \frac{dt}{dx} \text{ [from chain rule of differentiation]}$$

$$\frac{dz}{dx} = \frac{-1}{t^2} \times 2x = -\frac{2x}{1+x^2} \left[-\frac{d}{dx}(x^n) = nx^{n-1} \right]$$

$$\frac{d^2y}{dx^2} = -\frac{2x}{(1+x^2)^2}$$

1 H. Question

Find the second order derivatives of each of the following functions:

x cos x

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{\text{The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. <math>f = v(u(x))$. For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = x \cos x$

We have to find $\frac{d^2y}{dx^2}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx}(x\cos x)$$

Let u = x and $v = \cos x$

As,
$$y = uv$$

 \therefore Using product rule of differentiation:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = x \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} x$$

$$\frac{dy}{dx} = -x\sin x + \cos x$$

$$\left[\frac{d}{dx} (\cos x) = -\sin x \text{ and } \frac{d}{dx} (x^n) = nx^{n-1} \right]$$

Again differentiating w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-x\sin x + \cos x\right)$$

$$= \frac{d}{dx} (-x\sin x) + \frac{d}{dx}\cos x$$

Again using the product rule:

$$\frac{d^2y}{dx^2} = -x\frac{d}{dx}\sin x + \sin x\frac{d}{dx}(-x) + \frac{d}{dx}\cos x$$

$$[\ \because \tfrac{d}{dx}(sinx) = cosx \ and \tfrac{d}{dx}(x^n) = nx^{n-1}]$$

$$\frac{d^2y}{dx^2} = -x\cos x - \sin x - \sin x$$

$$\frac{d^2y}{dx^2} = -x\cos x - 2\sin x$$

1 I. Question

Find the second order derivatives of each of the following functions:

log (log x)

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

$$\sqrt{\text{Product rule of differentiation-}} \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,
$$y = log (log x)$$

We have to find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dy^2} = \frac{d}{dy}(\frac{dy}{dy})$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx}(\log\log x)$$

Let $y = \log t$ and $t = \log x$

Using chain rule of differentiation:

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

Again differentiating w.r.t x:

As,
$$\frac{dy}{dx} = u \times v$$

Where
$$u = \frac{1}{x}$$
 and $v = \frac{1}{\log x}$

 $\ensuremath{\dot{\cdot}}$ using product rule of differentiation:

$$\frac{d^2y}{dx^2} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\tfrac{d^2y}{dx^2} = \ -\frac{1}{x^2\ (log\,x)^2} - \frac{1}{x^2\ log\,x} [\ \because \frac{d}{dx}(log\,x) = \frac{1}{x}\ and \frac{d}{dx}(x^n) = nx^{n-1}]$$

$$\therefore \frac{d^2y}{dx^2} = -\frac{1}{x^2 (log x)^2} - \frac{1}{x^2 log x}$$

2. Question

If
$$y=e^{-x} \cos x$$
, show that : $\frac{d^2y}{dx^2} = 2e^{-x} \sin x$.

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation-}} \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

 $\sqrt{\text{Apart}}$ from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,

$$y=e^{-x}\cos x$$

TO prove:

$$\frac{d^2y}{dx^2} = 2e^{-x} \sin x.$$

Clearly from the expression to be proved we can easily observe that we need to just find the second derivative of given function.

Given, $y = e^{-x} \cos x$

We have to find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

Let
$$u = e^{-x}$$
 and $v = \cos x$

As,
$$y = u*v$$

: using product rule of differentiation:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\label{eq:dy} \div \frac{dy}{dx} = e^{-x} \frac{d}{dx} (\cos x) + \cos x \frac{dy}{dx} e^{-x}$$

$$\frac{dy}{dx} = -e^{-x}\sin x - e^{-x}\cos x$$

$$[\because \frac{d}{dx}(\cos x) = -\sin x \& \frac{d}{dx}e^{-x} = -e^{-x}]$$

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-e^{-x}\sin x - e^{-x}\cos x\right)$$

$$= \frac{d}{dx} \left(-e^{-x} \sin x \right) - \frac{d}{dx} \left(e^{-x} \cos x \right)$$

∴ using product rule of differentiation:
$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$∴ \frac{dy}{dx} = e^{-x}\frac{d}{dx}(\cos x) + \cos x\frac{dy}{dx}e^{-x}$$

$$\frac{dy}{dx} = -e^{-x}\sin x - e^{-x}\cos x$$

$$[\because \frac{d}{dx}(\cos x) = -\sin x & \frac{d}{dx}e^{-x} = -e^{-x}]$$
Again differentiating w.r.t x:
$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-e^{-x}\sin x - e^{-x}\cos x\right)$$

$$= \frac{d}{dx}\left(-e^{-x}\sin x\right) - \frac{d}{dx}\left(e^{-x}\cos x\right)$$
Again using the product rule:
$$\frac{d^2y}{dx^2} = -e^{-x}\frac{d}{dx}(\sin x) - \sin x\frac{d}{dx}e^{-x} - e^{-x}\frac{d}{dx}(\cos x) - \cos x\frac{d}{dx}(e^{-x})$$

$$\frac{d^2y}{dx^2} = -e^{-x}\cos x + e^{-x}\sin x + e^{-x}\sin x + e^{-x}\cos x$$

$$[\because \frac{d}{dx}(\cos x) = -\sin x, \frac{d}{dx}e^{-x} = -e^{-x}]$$

$$\frac{d^{2}y}{dx^{2}} = -e^{-x}\cos x + e^{-x}\sin x + e^{-x}\sin x + e^{-x}\cos x$$

$$\left[\because \frac{d}{dx}(\cos x) = -\sin x, \frac{d}{dx}e^{-x} = -e^{-x} \right]$$

$$\frac{d^2y}{dx^2} = 2e^{-x}\sin x \dots proved$$

3. Question

If y = x + tan x, show that:
$$\cos^2 x \frac{d^2y}{dx^2} - 2y - 2x = 0$$

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{\text{The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)$

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{\mathrm{df}}{\mathrm{dx}} = \frac{\mathrm{dv}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

 $\sqrt{\text{Apart}}$ from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = x + \tan x \dots \text{equation } 1$

As we have to prove: $\cos^2 x \frac{d^2 y}{dx^2} - 2y + 2x = 0$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dy^2} = \frac{d}{dy}(\frac{dy}{dy})$$

So lets first find dy/dx and differentiate it again.

$$=1+\sec^2 x$$

$$\frac{dy}{dx} = 1 + \sec^2 x$$

Differentiating again with respect to x :

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(1 + \sec^2 x\right) = \frac{d}{dx}(1) + \frac{d}{dx}(\sec^2 x)$$

$$\frac{d^2y}{dx^2} = 0 + 2\sec x \sec x \tan x$$

[differentiated $\sec^2 x$ using chain rule, let $t = \sec x$ and $z = t^2 : \frac{dz}{dx} = \frac{dz}{dt} \times \frac{dt}{dx}$]

$$\frac{d^2y}{dx^2} = 2\sec^2x\tan x$$
equation 2

As we got an expression for the second order, as we need $\cos^2 x$ term with $\frac{d^2 y}{dx^2}$

Multiply both sides of equation 1 with $\cos^2 x$:

∴ we have,

$$\cos^2 x \frac{d^2 y}{dx^2} = 2 \cos^2 x \sec^2 x \tan x \ [\because \cos x \times \sec x = 1]$$

$$\cos^2 x \frac{d^2 y}{dx^2} = 2 \tan x$$

From equation 1:

$$\tan x = y - x$$
. $\cos^2 x \frac{d^2 y}{dx^2} = 2(y - x)$

$$\therefore \cos^2 x \frac{d^2 y}{dx^2} - 2y + 2x = 0 \dots \text{proved}$$

4. Question

If
$$y = x^3 \log x$$
, prove that $\frac{d^4y}{dx^4} = \frac{6}{x}$.

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

As we have to prove : $\frac{d^4y}{dx^4} = \frac{6}{x}$

We notice a third order derivative in the expression to be proved so first take the step to find the third order derivative.

Given, $y = x^3 \log x$

Let's find - $\frac{d^4y}{dx^4}$

$$\mathsf{AS}\, \frac{d^4y}{dx^4} = \frac{d}{dx}\big(\,\frac{d^3y}{dx^2}\big) = \frac{d}{dx}\frac{d}{dx}\Big(\frac{d^2y}{dx^2}\Big) = \frac{d}{dx}\bigg(\frac{d}{dx}\Big(\frac{d}{dx}\Big(\frac{dy}{dx}\Big)\Big)\bigg)$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 \log x)$$

differentiating using product rule:

$$\frac{dy}{dx} = x^3 \frac{d}{dx} \log x + \log x \frac{d}{dx} x^3$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{x}^3}{\mathrm{x}} + 3\mathrm{x}^2 \log \mathrm{x}$$

$$\left[\frac{d}{dx}(x^n) = nx^{n-1} & \frac{d}{dx}(\log x) = \frac{1}{x}\right]$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = x^2(1 + 3\log x)$$

Again differentiating using product rule:

$$\frac{d^2y}{dx^2} = x^2 \frac{d}{dx} (1 + 3\log x) + (1 + 3\log x) \frac{d}{dx} x^2$$

$$\frac{d^2y}{dx^2} = x^2 \times \frac{3}{x} + (1 + 3 \log x) \times 2x$$

$$\left[\frac{d}{dx}(x^n) = nx^{n-1} & \frac{d}{dx}(\log x) = \frac{1}{x}\right]$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = x(5 + 6 \log x)$$

Again differentiating using product rule:

$$\frac{d^3y}{dx^3} = x\frac{d}{dx}(5 + 6\log x) + (5 + 6\log x)\frac{d}{dx}x$$

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = x \times \frac{6}{x} + (5 + 6\log x)$$

$$[\frac{d}{dx}(x^n) = nx^{n-1} \ \& \ \frac{d}{dx}(\log x) = \frac{1}{x}]$$

$$\frac{d^3y}{dx^3} = 11 + 6\log x$$

Again differentiating w.r.t x :

$$\frac{d^4y}{dx^4} = \frac{6}{x} \dots proved$$

5. Question

If y = log (sin x), prove that:
$$\frac{d^3y}{dx^2} = 2\cos x \cos^3 x$$
.

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$

 $\sqrt{\text{The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)$

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

As we have to prove: $\frac{d^3y}{dx^2} = 2\cos x \cos^3 x$

We notice a third order derivative in the expression to be proved so first take the step to find the third order derivative.

Given, y = log (sin x)

Let's find $-\frac{d^3y}{dx^3}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d}{dx} \left(\frac{d}{dx} \left(\frac{dy}{dx} \right) \right)$$

So lets first find dy/dx and differentiate it again.

$$\frac{dy}{dx} = \frac{d}{dx}(\log(\sin x))$$

differentiating $\sin(\log x)$ using the chain rule,

let, $t = \sin x$ and $y = \log t$

$$\because \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} [using chain rule]$$

$$\frac{dy}{dx} = \cos x \times \frac{1}{t}$$

$$[\because \frac{d}{dx} \log x = \frac{1}{x} \& \frac{d}{dx} (\sin x) = \cos x]$$

$$\frac{dy}{dx} = \frac{\cos x}{\sin x} = \cot x$$

Differentiating again with respect to x:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \; (\cot x)$$

$$\frac{d^2y}{dx^2} = -\csc^2x$$

$$\left[\begin{array}{c} \frac{d}{dx} \cot x = -\csc^2 x \end{array} \right]$$

$$\frac{d^2y}{dx^2} = -\csc^2x$$

Differentiating again with respect to x:

$$\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d}{dx} (-\csc^2 x)$$

using the chain rule and $\frac{d}{dx}$ cosec x =

$$\frac{d^3y}{dx^3} = -2\csc x(-\csc x\cot x)$$

=
$$2\csc^2 x \cot x = 2 \csc^2 x \frac{\cos x}{\sin x} [\because \cot x = \cos x/\sin x]$$

$$\label{eq:cosec} \div \frac{d^3y}{dx^3} = 2 cosec^3x cosx \dots proved$$

6. Question

If y = 2 sin x + 3 cos x, show that:
$$\frac{d^2y}{dx^2} + y = 0$$

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation-}} \frac{d}{dv}(uv) = u \frac{dv}{dv} + v \frac{du}{dv}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = 2\sin x + 3\cos x$ equation 1

As we have to prove : $\frac{d^2y}{dy^2} + y = 0$.

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again.

$$[\because \frac{d}{dx}(\sin x) = \cos x \, \& \frac{d}{dx}(\cos x) = -\sin x]$$

$$= 2\cos x - 3\sin x$$

$$\frac{dy}{dx} = 2 \cos x - 3 \sin x$$

Differentiating again with respect to x :

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(2\cos x - 3\sin x\right) = \frac{2d}{dx}\cos x - 3\frac{d}{dx}\sin x$$

$$\frac{d^2y}{dx^2} = -2\sin x - 3\cos x$$

From equation 1 we have:

$$y = 2 \sin x + 3 \cos x$$

$$\frac{d^2y}{dx^2} = -(2\sin x + 3\cos x) = -y$$

$$\frac{d^2y}{dx^2} + y = 0 \dots \text{proved}$$

7. Question

If
$$y = \frac{\log x}{x}$$
, show that $\frac{d^2y}{dx^2} = \frac{2\log x - 3}{x^3}$.

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{\mathrm{df}}{\mathrm{dx}} = \frac{\mathrm{dv}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$$

 $\sqrt{\text{Product rule of differentiation-}} \frac{d}{dv}(uv) = u \frac{dv}{dv} + v \frac{du}{dv}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,
$$y = \frac{\log x}{x}$$
equation 1

As we have to prove : $\frac{d^2y}{dx^2} = \frac{2\log x - 3}{x^3}$...

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx and differentiate it again.

As y is the product of two functions u and v

Let
$$u = log x$$
 and $v = 1/x$

Using product rule of differentiation:

$$\frac{d}{dv}(uv) = u\frac{dv}{dv} + v\frac{du}{dv}$$

$$\frac{d}{dx}\left(\frac{\log x}{x}\right) = \log x \frac{d}{dx} \frac{1}{x} + \frac{1}{x} \frac{d}{dx} \log x$$

$$[\because \frac{d}{dx}(\log x) = \frac{1}{x} & \frac{d}{dx}(x^n) = nx^{n-1}]$$

$$\frac{dy}{dx} = -\frac{1}{x} \log x + \frac{1}{x}$$

$$\frac{dy}{dx} = -\frac{1}{x^2} \log x + \frac{1}{x^2}$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{\mathrm{x}^2} \left(1 - \log \mathrm{x} \right)$$

Again using the product rule to find $\frac{d^2y}{dx^2}$:

$$\frac{d^2y}{dx^2} = (1 - \log x)\frac{d}{dx}\frac{1}{x^2} + \frac{1}{x^2}\frac{d}{dx}(1 - \log x)$$

$$\left[\because \frac{d}{dx}(\log x) = \frac{1}{x} \& \frac{d}{dx}(x^n) = nx^{n-1}\right]$$

$$= -2 \left(\frac{1 - \log x}{x^3} \right) - \frac{1}{x^3}$$

$$\frac{d^2y}{dx^2} = \frac{2\log x - 3}{x^3} \dots \text{ proved}$$

8. Question

If
$$x = a \sec \theta$$
, $y = b \tan \theta$, prove that $\frac{d^2y}{dx^2} = -\frac{b^4}{a^2v^3}$.

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given.

$$x = a \sec \theta \dots equation 1$$

$$y = b \tan \theta \dots equation 2$$

to prove :
$$\frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^3}$$
.

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a \sec \theta = a \sec \theta \tan \theta$$
equation 3

Similarly,
$$\frac{dy}{d\theta} = b \sec^2 \theta$$
equation 4

$$\left[\because \frac{d}{dx} \sec x = \sec x \tan x, \frac{d}{dx} \tan x = \sec^2 x\right]$$

Similarly,
$$\frac{dy}{d\theta} = b \sec^2 \theta$$
equation 4

[: $\frac{d}{dx} \sec x = \sec x \tan x, \frac{d}{dx} \tan x = \sec^2 x$]

: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b}{a} \csc \theta$

Differentiating again w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{b}{a}\csc\theta\right)$$

$$\frac{d^2y}{dx^2} = -\frac{b}{a}cosec\theta \cot\theta \frac{d\theta}{dx}.....equation 5 [using chain rule]$$

From equation 3:

$$\frac{\mathrm{dx}}{\mathrm{d}\theta} = \operatorname{a} \sec \theta \tan \theta$$

$$\frac{d\theta}{dx} = \frac{1}{a \sec \theta \tan \theta}$$

Putting the value in equation 5:

$$\frac{d^2y}{dx^2} = -\frac{b}{a} cosec \theta \cot \theta \frac{1}{a \sec \theta \tan \theta}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{-b}{a^2 \tan^3 \theta}$$

From equation 1:

$$y = b \tan \theta$$

$$\label{eq:definition} \therefore \frac{d^2y}{dx^2} = \frac{-b}{\frac{a^2y^3}{b^3}} = \, -\frac{b^4}{a^2y^3} \, \text{proved}.$$

9. Question

If $x = a (\cos \theta + \theta \sin \theta)$, $y = a (\sin \theta - \theta \cos \theta)$ prove that

$$\frac{d^2x}{d\theta^2} = a(\cos\theta - \theta\sin\theta), \\ \frac{d^2y}{d\theta^2} = a\;(\sin\theta + \theta\,\cos\theta)\;\text{and}\; \\ \frac{d^2y}{dx^2} = \frac{\sec^2\theta}{a\theta}.$$

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation-}} \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

The idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$, i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given,

$$x = a (\cos \theta + \theta \sin \theta) \dots equation 1$$

$$y = a (\sin \theta - \theta \cos \theta) \dots equation 2$$

to prove:

i)
$$\frac{d^2x}{d\theta^2} = a(\cos\theta - \theta \sin\theta)$$

ii)
$$\frac{d^2y}{d\theta^2} = a \left(\sin \theta + \theta \cos \theta \right)$$

iii)
$$\frac{d^2y}{dx^2} = \frac{\sec^3\theta}{a\theta}$$
.

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a(\cos\theta + \theta \sin\theta)$$

$$= a(-\sin\theta + \theta\cos\theta + \sin\theta)$$

[differentiated using product rule for $\theta \sin \theta$]

$$= a\theta \cos\theta$$
 ..eqn 4

Again differentiating w.r.t θ using product rule:-

$$\frac{d^2x}{d\theta^2} = a(-\theta\sin\theta + \cos\theta)$$

$$\frac{d^2x}{d\theta^2} = a(\cos\theta - \theta\sin\theta) \dots \text{proved (i)}$$

Similarly,

$$\frac{dy}{d\theta} = \frac{d}{d\theta} a (\sin \theta - \theta \cos \theta) = a \frac{d}{d\theta} \sin \theta - a \frac{d}{d\theta} (\theta \cos \theta)$$

$$= a\cos\theta + a\theta\sin\theta - a\cos\theta$$

$$\dot{\theta} = a\theta \sin\theta \dots equation 5$$

Again differentiating w.r.t θ using product rule:-

$$\frac{d^2x}{d\theta^2} = a(\theta\cos\theta + \sin\theta)$$

$$\frac{d^2x}{d\theta^2} = a(\sin\theta + \theta\cos\theta) \dots \text{proved (ii)}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Using equation 4 and 5:

$$\frac{dy}{dx} = \frac{a\theta \sin \theta}{a\theta \cos \theta} = \tan \theta$$

As
$$\frac{d^2y}{dy^2} = \frac{d}{dy}(\frac{dy}{dy})$$

 \therefore again differentiating w.r.t x :

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\tan\theta$$

$$= \sec^2 \theta \frac{d\theta}{dx}$$
 [using chain rule]

$$\frac{dx}{d\theta} = a\theta \cos\theta = \frac{d\theta}{dx} = \frac{1}{a\theta \cos\theta}$$

Putting a value in the above equation-

We have:

$$\frac{d^2y}{dx^2} = \sec^2\theta \times \frac{1}{a\theta\cos\theta}$$

$$\frac{d^2y}{dx^2} = \frac{\sec^3\theta}{a\theta} \dots \dots \text{proved (iii)}$$

10. Question

If y = e^x cosx, prove that
$$\frac{d^2y}{dx^2} = 2e^x \cos\left(x + \frac{\pi}{2}\right)$$

Answer

Basic idea:

 $\sqrt{\text{Second order derivative is nothing but derivative of derivative i.e.}} \frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

 $\sqrt{}$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. f = v(u(x)). For the sake of simplicity just assume t = u(x)

Then f = v(t). By chain rule, we can write the derivative of f w.r.t to x as:

$$\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$$

 $\sqrt{\text{Product rule of differentiation}} \cdot \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

 $\sqrt{\text{Apart}}$ from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,

$$y=e^{x}\cos x$$

TO prove:

$$\frac{d^2y}{dx^2} = 2e^x \cos\left(x + \frac{\pi}{2}\right)$$

Clearly from the expression to be proved we can easily observe that we need to just find the second derivative of given function.

Given,
$$y = e^x \cos x$$

We have to find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So lets first find dy/dx and differentiate it again

$$\frac{dy}{dx} = \frac{d}{dx} (e^x \cos x)$$

Let
$$u = e^x$$
 and $v = \cos x$

As,
$$y = u^*v$$

∴ Using product rule of differentiation:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = e^{x} \frac{d}{dx} (\cos x) + \cos x \frac{dy}{dx} e^{x}$$

$$\tfrac{dy}{dx} = -e^x \sin x + e^x \cos x \, [\ \because \tfrac{d}{dx} (\cos x) = -\sin x \, \& \, \tfrac{d}{dx} e^x = \, e^x]$$

Again differentiating w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-e^{x}\sin x + e^{x}\cos x\right)$$

$$= \frac{d}{dx} (-e^x \sin x) + \frac{d}{dx} (e^x \cos x)$$

Again using the product rule:

$$\frac{d^2y}{dx^2} = -e^x \frac{d}{dx} (\sin x) - \sin x \frac{d}{dx} e^x + e^x \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} (e^x)$$

$$\frac{d^2y}{dx^2} = -e^x \cos x - e^x \sin x - e^x \sin x + e^x \cos x$$

$$\left[\because \frac{d}{dx}(\cos x) = -\sin x, \frac{d}{dx}e^{-x} = -e^{-x} \right]$$

$$\frac{d^2y}{dx^2} = -2e^x \sin x \left[\because -\sin x = \cos (x + \pi/2) \right]$$

$$\frac{d^2y}{dx^2} = -2e^x \cos(x + \frac{\pi}{2}) \dots \text{proved}$$

11. Question

If x = a cos
$$\theta$$
 , y = b sin θ , show that $\frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^3}.$

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given,

$$x = a \cos \theta$$
equation 1

$$y = b \sin \theta$$
equation 2

to prove :
$$\frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^2}$$
.

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a \cos \theta = -a \sin \theta$$
equation 3

Similarly,
$$\frac{dy}{d\theta} = b\cos\theta$$
equation 4

$$[\because \frac{d}{dx}\cos x = -\sin x \tan x, \frac{d}{dx}\sin x = \cos x$$

Differentiating again w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-\frac{b}{a}\cot\theta\right)$$

$$\frac{d^2y}{dx^2} = \frac{b}{a}cosec^2\theta \frac{d\theta}{dx}.....equation 5$$

[using chain rule and $\frac{d}{dx} cotx = -cosec^2x$]

From equation 3:

$$\frac{dx}{d\theta} = -\operatorname{asin}\theta$$

$$\frac{d\theta}{dx} = \frac{-1}{a\sin\theta}$$

Putting the value in equation 5:

$$\frac{d^2y}{dx^2} = -\frac{b}{a}cosec^2\theta \frac{1}{asin\theta}$$

$$\frac{d^2y}{dx^2} = \frac{-b}{a^2 \sin^3 \theta}$$

From equation 1:

$$y = b \sin \theta$$

$$\label{eq:delta_def} \therefore \frac{d^2y}{dx^2} = \frac{-b}{\frac{a^2y^3}{b^3}} = \, -\frac{b^4}{a^2y^3} \, \text{proved}.$$

12. Question

If x = a (1 -
$$\cos^3\theta$$
), y = a $\sin^3\theta$, Prove that $\frac{d^2y}{dx^2} = \frac{32}{27a}$ at $\theta = \frac{\pi}{6}$

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given,

$$x = a (1 - cos^3\theta)$$
equation 1

$$y = a \sin^3 \theta$$
,equation 2

to prove :
$$\frac{d^2y}{dx^2} = \frac{32}{27a}$$
 at $\theta = \frac{\pi}{6}$.

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a \left(1 - \cos^3\theta\right) = 3 \cos^2\theta \sin\theta$$
equation 3 [using chain rule]

Similarly,

 $\frac{dy}{d\theta} = \frac{d}{d\theta} a \sin^3 \theta = 3 a \sin^2 \theta \cos \theta$ equation 4

 $[\because \frac{d}{dx} cos x = - sin x \, \& \frac{d}{dx} cos \, x = sin \, x]$

Differentiating again w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(\tan\theta)$$

$$\frac{d^2y}{dx^2} = \sec^2\theta \frac{d\theta}{dx}$$
.....equation 5

[using chain rule and $\frac{d}{dx} \tan x = \sec^2 x$]

From equation 3:

$$\frac{dx}{d\theta} = 3 \, a cos^2 \, \theta \, sin \, \, \theta$$

$$\frac{1}{dx} = \frac{1}{3 \cos^2 \theta \sin \theta}$$

Putting the value in equation 5 :

$$\frac{d^2y}{dx^2} = sec^2\theta \frac{1}{3 \, acos^2\theta \sin\,\theta}$$

$$\frac{d^2y}{dx^2} = \frac{1}{3 \, a cos^4 \, \theta \sin \theta}$$

Put $\theta = \pi/6$

$$\left(\frac{d^2y}{dx^2}\right)at\left(x=\frac{\pi}{6}\right) = \frac{1}{3 \operatorname{acos}^4 \frac{\pi}{6} \sin \frac{\pi}{6}} = \frac{1}{3a\left(\frac{\sqrt{3}}{2}\right)^2}$$

$$\ \, \cdot \cdot \left(\frac{d^2y}{dx^2}\right) at \, \left(x = \frac{\pi}{6}\right) = \frac{32}{27\,a}\, \dots proved$$

13. Question

If
$$x = a (\theta + \sin \theta)$$
, $y = a (1 + \cos \theta)$, prove that $\frac{d^2y}{dx^2} = -\frac{a}{v^2}$.

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given,

$$x = a (\theta + \sin \theta)$$
equation 1

$$y = a (1 + \cos \theta) \dots equation 2$$

to prove :
$$\frac{d^2y}{dx^2} = -\frac{a}{v^2}$$

We notice a second-order derivative in the expression to be proved so first take the step to find the second

Let's find $\frac{d^2y}{dy^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a (\theta + \sin \theta) = a(1 + \cos \theta) = y [\because \text{ from equation 2}] \dots \text{ equation 3}$$

Similarly,

$$\frac{dy}{d\theta} = \frac{d}{d\theta} a (1 + \cos \theta) = -a\sin \theta$$
equation 4

$$[\because \frac{d}{dx}\cos x = -\sin x, \frac{d}{dx}\sin x = \cos x$$

Differentiating again w.r.t x

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = -a\frac{d}{dx}(\frac{\sin\theta}{y})$$

Using product rule and chain rule of differentiation together;

$$\frac{d^2y}{dx^2} = -a(\frac{\sin\theta}{-v^2}\frac{dy}{dx} + \frac{1}{v}\cos\theta\frac{d\theta}{dx})$$

$$\frac{d^2y}{dx^2} = -a(\frac{\sin\theta}{-v^2}\frac{(-a\sin\theta)}{v} + \frac{1}{v}\cos\theta\frac{1}{v})$$
 [using equation 3 and 5]

$$\frac{d^2y}{dx^2} = -a(\frac{a\sin^2\theta}{v^3} + \frac{1}{v^2}\cos\theta)$$

$$\frac{d^2y}{dx^2} = -\frac{a}{y^2} \left(\frac{a sin^2 \theta}{a \left(1 + \cos \theta \right)} + \cos \theta \right) \text{[from equation 1]}$$

$$\frac{d^2y}{dx^2} = -\frac{a}{y^2} \left(\frac{1 - \cos^2 \theta}{(1 + \cos \theta)} + \cos \theta \right)$$

$$\frac{d^2y}{dx^2} = -\frac{a}{y^2} \left(\frac{(1-\cos\theta)(1+\cos\theta)}{(1+\cos\theta)} + \cos\theta \right)$$

$$\frac{d^2y}{dx^2} = -\frac{a}{y^2}(1-\cos\theta + \cos\theta)$$

$$\frac{d^2y}{dx^2} = -\frac{a}{v^2} \dots \text{proved}$$

14. Question

If
$$x = a (\theta - \sin \theta)$$
, $y = a (1 + \cos \theta)$ find $\frac{d^2y}{dx^2}$.

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write : $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$

Given,

 $x = a (\theta - \sin \theta)$ equation 1

 $y = a (1 + \cos \theta) \dots equation 2$

to find: $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a (\theta - \sin \theta) = a(1 - \cos \theta)$$
equation 3

Similarly

$$\frac{dy}{d\theta} = \frac{d}{d\theta} a (1 + \cos \theta) = -a\sin \theta$$
equation 4

$$[\because \frac{d}{dx} cos x = - sin x, \frac{d}{dx} sin x = cos x$$

Differentiating again w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = -\frac{d}{dx}\left(\frac{\sin\theta}{1-\cos\theta}\right)$$

Using product rule and chain rule of differentiation together:

$$\frac{d^2y}{dx^2} = \{-\frac{1}{1-\cos\theta} \frac{d}{d\theta} \sin\theta - \sin\theta \frac{d}{d\theta} \frac{1}{(1-\cos\theta)}\} \frac{d\theta}{dx}$$

Apply chain rule to determine $\frac{d}{d\theta} \frac{1}{(1-\cos\theta)}$

$$\frac{d^2y}{dx^2} = \left\{ \frac{-\cos\theta}{1-\cos\theta} + \frac{\sin^2\theta}{(1-\cos\theta)^2} \right\} \frac{1}{a(1-\cos\theta)} \text{[using equation 3]}$$

$$\frac{d^2y}{dx^2} = \left. \left\{ \frac{-\cos\theta(1-\cos\theta) + \sin^2\theta}{(1-\cos\theta)^2} \right\} \frac{1}{a(1-\cos\theta)}$$

$$\frac{d^2y}{dx^2} = \left\{ \frac{-\cos\theta + \cos^2\theta + \sin^2\theta}{(1-\cos\theta)^2} \right\} \frac{1}{a(1-\cos\theta)}$$

$$\tfrac{d^2y}{dx^2} = \, \left\{ \tfrac{1-\cos\theta}{(1-\cos\theta)^2} \right\} \! \tfrac{1}{a(1-\cos\theta)} [\,\, \because \, \cos^2\theta + \sin^2\theta = 1]$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{1}{\mathrm{a} (1 - \cos \theta)^2}$$

$$\frac{d^2y}{dx^2} = \frac{1}{a\left(2\sin^2\frac{\theta}{2}\right)^2} \left[\because 1 - \cos\theta = 2\sin^2\theta/2 \right]$$

$$\frac{d^2y}{dx^2} = \frac{1}{4a} \csc^4 \frac{\theta}{2}$$

15. Question

If x = a (1 - cos
$$\theta$$
), y =a (θ + sin θ), prove that $\frac{d^2y}{dx^2} = -\frac{1}{a}$ at $\theta = \frac{\pi}{2}$

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given,

$$y = a (\theta + \sin \theta) \dots equation 1$$

$$x = a (1-\cos\theta)$$
equation 2

to prove :
$$\frac{d^2y}{dx^2} = -\frac{1}{a}$$
 at $\theta = \frac{\pi}{2}$.

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dy}{d\theta} = \frac{d}{d\theta} a (\theta + \sin \theta) = a(1 + \cos \theta) \dots \text{equation 3}$$

Similarly

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a (1 - \cos \theta) = a \sin \theta \dots$$
equation 4

$$[\because \frac{d}{dx}\cos x = -\sin x, \frac{d}{dx}\sin x = \cos x]$$

$$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a(1+\cos\theta)}{\sin\theta} = \frac{(1+\cos\theta)}{\sin\theta} \dots \text{ equation 5}$$

Differentiating again w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{(1+\cos\theta)}{\sin\theta}\right) = \frac{d}{dx}(1+\cos\theta)\csc\theta$$

Using product rule and chain rule of differentiation together:

$$\frac{d^2y}{dx^2} = \left\{ \csc\theta \frac{d}{d\theta} (1 + \cos\theta) + (1 + \cos\theta) \frac{d}{d\theta} \csc\theta \right\} \frac{d\theta}{dx}$$

$$\frac{d^2y}{dx^2} = \{ \csc \theta(-\sin \theta) + (1 + \cos \theta)(-\csc \theta \cot \theta) \} \frac{1}{a\sin \theta} [\text{using equation 4}]$$

$$\frac{d^2y}{dx^2} = \{-1 - \csc\theta \cot\theta - \cot^2\theta\} \frac{1}{a\sin\theta}$$

As we have to find
$$\frac{d^2y}{dx^2} = -\frac{1}{a}$$
 at $\theta = \frac{\pi}{2}$

 \therefore put $\theta = \pi/2$ in above equation:

$$\frac{d^2y}{dx^2} = \ \{-1 - cosec\frac{\pi}{2} \ cot\frac{\pi}{2} - cot^2\frac{\pi}{2}\} \frac{1}{asin\frac{\pi}{2}} = \frac{\{-1 - 0 - 0\}1}{a}$$

$$\frac{d^2y}{dx^2} = -\frac{1}{a} \dots \cdot ans$$

16. Question

If x = a (1 + cos
$$\theta$$
), y = a (θ + sin θ) Prove that $\frac{d^2y}{dx^2} = \frac{-1}{a}$ at $\theta = \frac{\pi}{2}$.

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given.

$$y = a (\theta + \sin \theta) \dots equation 1$$

$$x = a (1 + \cos \theta) \dots equation 2$$

to prove :
$$\frac{d^2y}{dx^2} = -\frac{1}{a}$$
 at $\theta = \frac{\pi}{2}$.

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dy}{d\theta} = \frac{d}{d\theta} a \left(\theta \, + \, \sin\theta\right) = a(1 + \cos\theta) \, \text{equation 3}$$
 Similarly,

$$\frac{dx}{d\theta} = \frac{d}{d\theta} a (1 + \cos \theta) = -a\sin \theta$$
.....equation 4

$$[\because \frac{d}{dx} cos x = - sin x, \frac{d}{dx} sin x = cos x]$$

$$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a(1 + \cos\theta)}{-a\sin\theta} = -\frac{(1 + \cos\theta)}{\sin\theta}$$
equation 5

Differentiating again w.r.t x:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-\frac{(1+\cos\theta)}{\sin\theta}\right) = -\frac{d}{dx}(1+\cos\theta) \csc\theta$$

Using product rule and chain rule of differentiation together:

$$\frac{d^2y}{dx^2} = -\{ cosec \, \theta \frac{d}{d\theta} (1 + cos \, \theta) + (1 + cos \, \theta) \frac{d}{d\theta} cosec \, \theta \} \frac{d\theta}{dx}$$

$$\frac{d^2y}{dx^2} = -\{\csc\theta(-\sin\theta) + (1+\cos\theta)(-\csc\theta\cot\theta)\}\frac{1}{(-a\sin\theta)}$$

[using equation 4]

$$\frac{d^2y}{dx^2} = \{-1 - cosec\theta \cot\theta - \cot^2\theta\} \frac{1}{asin\theta}$$

As we have to find $\frac{d^2y}{dx^2} = -\frac{1}{a}$ at $\theta = \frac{\pi}{2}$

∴ put $\theta = \pi/2$ in above equation:

$$\frac{d^2y}{dx^2} = \ \{-1 - cosec\frac{\pi}{2} \ cot\frac{\pi}{2} - cot^2\frac{\pi}{2}\} \frac{1}{asin\frac{\pi}{2}} = \frac{\{-1 - 0 - 0\}1}{a}$$

$$\frac{d^2y}{dx^2} = -\frac{1}{a}$$

17. Question

If
$$x = \cos \theta$$
, $y = \sin^3 \theta$. Prove that $y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2 \theta (5\cos^2 \theta - 1)$

Answer

The idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$, i.e. y is a function of θ and x is also some other function of θ .

Then $dy/d\theta = f'(\theta)$ and $dx/d\theta = g'(\theta)$

We can write :
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

Given,

$$y = sin^3\theta$$
equation 1

$$x = \cos \theta$$
equation 2

To prove:
$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta \left(5\cos^2\theta - 1\right)$$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$\frac{dx}{d\theta} = -\sin\theta$$
equation 3

Applying chain rule to differentiate $\sin^3\theta$:

$$\frac{dy}{d\theta} = 3 \sin^2 \theta \cos \theta$$
equation 4

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dx}} = \frac{3\sin^2\theta\cos\theta}{-\sin\theta} = -3\sin\theta\cos\theta \dots \text{equation 5}$$

Again differentiating w.r.t x:

$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}(-3\sin\theta\cos\theta)$$

Applying product rule and chain rule to differentiate:

$$\frac{d^2y}{dx^2} = -3\{\sin\theta \frac{d}{d\theta}\cos\theta + \cos\theta \frac{d}{d\theta}\sin\theta\} \frac{d\theta}{dx}$$

$$\frac{d^2y}{dx^2} = 3\{-\sin^2\theta + \cos^2\theta\} \frac{1}{\sin\theta}$$

[using equation 3 to put the value of $d\theta/dx$]

Multiplying y both sides to approach towards the expression we want to prove-

$$y\frac{d^2y}{dx^2} = 3\{-sin^2\theta + cos^2\theta\}\frac{y}{sin\theta}$$

$$y\frac{d^2y}{dx^2} = 3\{-\sin^2\theta + \cos^2\theta\}\sin^2\theta$$

[from equation 1, substituting for y]

Adding equation 5 after squaring it:

$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\{-\sin^2\theta + \cos^2\theta\}\sin^2\theta + 9\sin^2\theta\cos^2\theta$$

$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta \{-\sin^2\theta + \cos^2\theta + 3\cos^2\theta\}$$

$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta \left\{5\cos^2\theta - 1\right\} \dots \operatorname{proved}$$

$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta \left\{-\sin^2\theta + \cos^2\theta + 3\cos^2\theta\right\}$$

$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta \left\{5\cos^2\theta - 1\right\} \dots \text{proved}$$
18. Question

If $y = \sin(\sin x)$, prove that : $\frac{d^2y}{dx^2} + \tan x \cdot \frac{dy}{dx} + y\cos^2 x = 0$

Answer

Given,
$$y = \sin(\sin x) \dots \text{equation 1}$$
To prove: $\frac{d^2y}{dx^2} + \tan y \cdot \frac{dy}{dx} + y\cos^2 x = 0$

To prove:
$$\frac{d^2y}{dx^2} + \tan x \cdot \frac{dy}{dx} + y\cos^2 x = 0$$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}\sin(\sin x)$$

Using chain rule, we will differentiate the above expression

Let
$$t = \sin x \Longrightarrow \frac{dt}{dx} = \cos x$$

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx} = \cos t \cos x = \cos(\sin x) \cos x$$
equation 2

Again differentiating with respect to x applying product rule:

$$\frac{d^2y}{dx^2} = \cos x \frac{d}{dx} \cos(\sin x) + \cos(\sin x) \frac{d}{dx} \cos x$$

Using chain rule again in the next step-

$$\frac{d^2y}{dx^2} = -\cos x \cos x \sin(\sin x) - \sin x \cos(\sin x)$$

$$\frac{d^2y}{dx^2} = -y\cos^2x - \tan x \cos x \cos(\sin x)$$

[using equation 1 : y = sin (sin x)]

And using equation 2, we have:

$$\frac{d^2y}{dx^2} = -y\cos^2x - \tan x \frac{dy}{dx}$$

$$\frac{d^2y}{dx^2} + y\cos^2x + \tan x \frac{dy}{dx} = 0 \dots \text{proved}$$

19. Question

If
$$y = (\sin^{-1} x)^2$$
, prove that: $(1-x^2) y_2 - xy_1 - 2 = 0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = \frac{dy}{dx}$

Given,

$$y = (\sin^{-1} x)^2equation 1$$

to prove :
$$(1-x^2)$$
 $y_2-xy_1-2=0$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$\frac{dy}{dx} = \frac{d}{dx} (\sin^{-1} x)^2$$

Using chain rule we will differentiate the above expression

Let
$$t = \sin^{-1} x = > \frac{dt}{dx} = \frac{1}{\sqrt{(1-x^2)}}$$
 [using formula for derivative of $\sin^{-1}x$]

And
$$y = t^2$$

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx} = 2t \frac{1}{\sqrt{(1-x^2)}} = 2 \sin^{-1} x \frac{1}{\sqrt{(1-x^2)}}$$
.....equation 2

Again differentiating with respect to x applying product rule:

$$\frac{d^2y}{dx^2} = 2\sin^{-1}x \, \frac{d}{dx} \left(\frac{1}{\sqrt{1-x^2}} \right) + \frac{2}{\sqrt{(1-x^2)}} \frac{d}{dx} \sin^{-1}x$$

$$\frac{d^2y}{dx^2} = -\frac{2\sin^{-1}x}{2(1-x^2)\sqrt{1-x^2}}(-2x) + \frac{2}{(1-x^2)}[\text{using } \frac{d}{dx}(x^n) = nx^{n-1} \ \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{(1-x^2)}}]$$

$$\frac{d^2y}{dx^2} = \frac{2x\sin^{-1}x}{(1-x^2)\sqrt{1-x^2}} + \frac{2}{(1-x^2)}$$

$$(1-x^2)\frac{d^2y}{dx^2} = 2 - \frac{2x\sin^{-1}x}{\sqrt{1-x^2}}$$

$$(1-x^2)\frac{d^2y}{dx^2} = 2-x\frac{dy}{dx}$$

$$\therefore$$
 (1-x²) y₂-xy₁-2=0proved

20. Question

If
$$y = (\sin^{-1} x)^2$$
, prove that: $(1-x^2) y_2 - xy_1 - 2 = 0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and y_1 = dy/dx

Given,

$$y = (\sin^{-1} x)^2 \dots equation 1$$

to prove :
$$(1-x^2)$$
 $y_2-xy_1-2=0$

Let's find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$\frac{dy}{dx} = \frac{d}{dx} (\sin^{-1} x)^2$$

Using chain rule we will differentiate the above expression

Let $t = \sin^{-1} x = > \frac{dt}{dx} = \frac{1}{\sqrt{(1-x^2)}}$ [using formula for derivative of $\sin^{-1}x$]

And
$$y = t^2$$

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx} = 2t \frac{1}{\sqrt{(1-x^2)}} = 2\sin^{-1}x \frac{1}{\sqrt{(1-x^2)}}$$
.....equation 2

Again differentiating with respect to x applying product rule:

$$\frac{d^2y}{dx^2} = \ 2 \sin^{-1}x \ \frac{d}{dx} \left(\frac{1}{\sqrt{1-x^2}} \right) + \frac{2}{\sqrt{(1-x^2)}} \frac{d}{dx} \sin^{-1}x$$

$$\tfrac{d^2y}{dx^2} = -\tfrac{2\sin^{-1}x}{2(1-x^2)\sqrt{1-x^2}} (-2x) + \tfrac{2}{(1-x^2)} [\text{using } \tfrac{d}{dx}(x^n) = nx^{n-1} \ \tfrac{d}{dx} \sin^{-1}x = \tfrac{1}{\sqrt{(1-x^2)}}]$$

$$\frac{d^2y}{dx^2} = \frac{2x\sin^{-1}x}{(1-x^2)\sqrt{1-x^2}} + \frac{2}{(1-x^2)}$$

$$(1-x^2)\frac{d^2y}{dx^2} = 2 + \frac{2x\sin^{-1}x}{\sqrt{1-x^2}}$$

$$(1-x^2)\frac{d^2y}{dx^2} = 2 + x\frac{dy}{dx}$$

$$\therefore$$
 (1-x²) y₂-xy₁-2=0proved

21. Question

If
$$y = e^{\tan -1x}$$
, Prove that: $(1+x^2)y_2 + (2x-1)y_1 = 0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

$$y = e^{tan-1x}$$
equation 1

to prove :
$$(1+x^2)y_2+(2x-1)y_1=0$$

Let's find
$$\frac{d^2y}{dx^2}$$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$\frac{dy}{dx} = \frac{d}{dx} e^{\tan^{-1}x}$$

Using chain rule we will differentiate the above expression

Let
$$t = tan^{-1} x = > \frac{dt}{dx} = \frac{1}{1+x^2} \left[\frac{d}{dx} tan^{-1} x = \frac{1}{1+x^2} \right]$$

And
$$y = e^t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx}=e^t\frac{1}{1+x^2}=\frac{e^{tan^{-1}x}}{1+x^2}......$$
 equation 2

Again differentiating with respect to x applying product rule:

$$\frac{d^2y}{dx^2} = e^{\tan^{-1}x} \frac{d}{dx} \left(\frac{1}{1+x^2} \right) + \frac{1}{1+x^2} \frac{d}{dx} e^{\tan^{-1}x}$$

Using chain rule we will differentiate the above expression-

$$\frac{d^2y}{dx^2} = \left(\frac{e^{tan^{-1}x}}{(1+x^2)^2}\right) - \frac{2xe^{tan^{-1}x}}{(1+x^2)^2} \text{ [using equation 2 ; } \\ \frac{d}{dx}(x^n) = nx^{n-1} \ \& \ \\ \frac{d}{dx}tan^{-1}x = \frac{1}{1+x^2} \text{]}$$

$$(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2} - \frac{2xe^{\tan^{-1}x}}{1+x^2}$$

$$(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2}(1-2x)$$

$$(1+x^2)\frac{d^2y}{dx^2} = \frac{dy}{dx}(1-2x)$$

$$(1+x^2)y_2+(2x-1)y_1=0$$
proved

22. Question

If $y = 3 \cos(\log x) + 4 \sin(\log x)$, prove that: $x^2y_2 + xy_1 + y = 0$.

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

$$y = 3 \cos(\log x) + 4 \sin(\log x) \dots equation 1$$

to prove:
$$x^2y_2 + xy_1 + y = 0$$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$\frac{dy}{dx} = \frac{d}{dx}(3\cos(\log x) + 4\sin(\log x))$$

Let,
$$\log x = t$$

$$\therefore y = 3\cos t + 4\sin t \dots equation 2$$

$$\frac{\mathrm{dy}}{\mathrm{dt}} = -3\sin t + 4\cos t$$

$$\frac{dt}{dx} = \frac{1}{x}$$
equation 3

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx} = (-3\sin t + 4\cos t)\frac{1}{x}$$
.....equation 4

Again differentiating w.r.t x:

Using product rule of differentiation we have

$$\frac{d^2y}{dx^2} = (-3\sin t + 4\cos t)\frac{d}{dx}\frac{1}{x} + \frac{1}{x}\frac{d}{dx}(-3\sin t + 4\cos t)$$

$$\frac{d^2y}{dx^2} = -\frac{1}{x^2}(-3\sin t + 4\cos t) + \frac{1}{x}\frac{dt}{dx}(-3\cos t - 4\sin t)$$

Using equation 2,3 and 4 we can substitute above equation as:

$$\frac{d^2y}{dx^2} = -\frac{1}{x^2}x\frac{dy}{dx} + \frac{1}{x}\frac{1}{x}(-y)$$

$$\frac{d^2y}{dx^2} = -\frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2}$$

Multiplying x^2 both sides:

$$x^2 \frac{d^2 y}{dx^2} = \ -x \frac{dy}{dx} - y$$

$$\therefore x^2y_2+xy_1+y=0 \dots proved$$

23. Question

If $y=e^{2x}(ax + b)$, show that $y_2-4y_1+4y = 0$.

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

$$y = e^{2x}(ax + b)$$
equation 1

to prove:
$$y_2 - 4y_1 + 4y = 0$$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$y = e^{2x}(ax + b)$$

Using product rule to find dy/dx:

$$\frac{dy}{dx} = e^{2x} \frac{dy}{dx} (ax + b) + (ax + b) \frac{d}{dx} e^{2x}$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = a\mathrm{e}^{2\mathrm{x}} + 2(a\mathrm{x} + \mathrm{b})\mathrm{e}^{2\mathrm{x}}$$

$$\frac{dy}{dx} = e^{2x}(a + 2ax + 2b) \dots equation 2$$

Again differentiating w.r.t x using product rule:

$$\frac{d^2y}{dx^2} = e^{2x}\frac{dy}{dx}(a + 2ax + 2b) + (a + 2ax + 2b)\frac{d}{dx}e^{2x}$$

$$\frac{d^2y}{dx^2}$$
 = 2ae^{2x} + 2(a + 2ax + 2b)e^{2x}.....equation 3

In order to prove the expression try to get the required form:

Subtracting 4*equation 2 from equation 3:

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} = 2ae^{2x} + 2(a + 2ax + 2b)e^{2x} - 4e^{2x}(a + 2ax + 2b)$$

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} = 2ae^{2x} - 2e^{2x}(a + 2ax + 2b)$$

$$\frac{d^2y}{dy^2} - 4\frac{dy}{dy} = -4e^{2x}(ax + b)$$

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} = -4y$$

$$y_2-4y_1+4y = 0$$
proved

24. Question

If
$$x = \sin\left(\frac{1}{a}\log y\right)$$
, show that $(1-x^2)y_2 - xy_1 - a^2 y = 0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

$$x = \sin\left(\frac{1}{a}\log y\right)$$

$$(\log y) = a \sin^{-1} x$$

$$y = e^{asin^{-1}x}$$
.....equation 1

to prove:
$$(1-x^2)y_2-xy_1-a^2y=0$$

Let's find $\frac{d^2y}{dx^2}$

As,
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$\forall \lor = \rho^{asin^{-1}}x$$

Let
$$t = a sin^{-1} x = > \frac{dt}{dx} = \frac{a}{\sqrt{(1-x^2)}} \left[\frac{d}{dx} sin^{-1} x = \frac{1}{\sqrt{(1-x^2)}} \right]$$

And
$$y = e^{x}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx} = e^t \frac{a}{\sqrt{(1-x^2)}} = \frac{ae^{asin^{-1}x}}{\sqrt{(1-x^2)}} \dots equation 2$$

Again differentiating with respect to x applying product rule:

$$\frac{d^{2}y}{dx^{2}} = ae^{asin^{-1}x} \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^{2}}} \right) + \frac{a}{\sqrt{(1 - x^{2})}} \frac{d}{dx} e^{asin^{-1}x}$$

Using chain rule and equation 2:

$$\frac{d^2y}{dx^2} = -\frac{ae^{asin^{-1}x}}{2(1-x^2)\sqrt{1-x^2}}(-2x) + \frac{a^2e^{asin^{-1}x}}{(1-x^2)} \left[\text{using } \frac{d}{dx}(x^n) = nx^{n-1} \ \frac{d}{dx}sin^{-1}x = \frac{1}{\sqrt{(1-x^2)}} \right]$$

$$\frac{d^2y}{dx^2} = \frac{xae^{asin^{-1}x}}{(1-x^2)\sqrt{1-x^2}} + \frac{a^2e^{asin^{-1}x}}{(1-x^2)}$$

$$(1-x^2)\frac{d^2y}{dx^2} = a^2e^{a\sin^{-1}x} + \frac{xae^{a\sin^{-1}x}}{\sqrt{1-x^2}}$$

Using equation 1 and equation 2:

$$(1-x^2)\frac{d^2y}{dx^2} = a^2y + x\frac{dy}{dx}$$

$$(1-x^2)y_2-xy_1-a^2y = 0.....proved$$

25. Question

If $\log y = \tan^{-1} X$, show that : $(1+x^2)y_2 + (2x-1)y_1 = 0$.

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = \frac{dy}{dx}$

Given,

$$\log y = \tan^{-1} X$$

$$\therefore$$
 y = $e^{\tan^{-1}x}$ equation 1

to prove :
$$(1+x^2)y_2+(2x-1)y_1=0$$

We notice a second order derivative in the expression to be proved so first take the step to find the second JK order derivative.

Let's find
$$\frac{d^2y}{dx^2}$$

As
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$$

So, lets first find dy/dx

$$\frac{dy}{dx} = \frac{d}{dx} e^{\tan^{-1}x}$$

Using chain rule, we will differentiate the above expression

Let
$$t = tan^{-1} x = > \frac{dt}{dx} = \frac{1}{1+x^2} \left[\frac{d}{dx} tan^{-1} x = \frac{1}{1+x^2} \right]$$

And
$$y = e^t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx} = e^{t} \frac{1}{1+x^{2}} = \frac{e^{tan^{-1}x}}{1+x^{2}}$$
.....equation 2

Again differentiating with respect to x applying product rule:

$$\frac{d^2y}{dx^2} = e^{\tan^{-1}x} \frac{d}{dx} \left(\frac{1}{1+x^2} \right) + \frac{1}{1+x^2} \frac{d}{dx} e^{\tan^{-1}x}$$

Using chain rule we will differentiate the above expression-

$$\frac{d^2y}{dx^2} = \left(\frac{e^{\tan^{-1}x}}{(1+x^2)^2}\right) - \frac{2xe^{\tan^{-1}x}}{(1+x^2)^2}$$

[using equation 2; $\frac{d}{dx}(x^n) = nx^{n-1} & \frac{d}{dx} tan^{-1} x = \frac{1}{1+x^2}$]

$$(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2} - \frac{2xe^{\tan^{-1}x}}{1+x^2}$$

$$(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2} (1-2x)$$

$$(1+x^2)\frac{d^2y}{dx^2} = \frac{dy}{dx}(1-2x)$$

$$(1+x^2)y_2+(2x-1)y_1=0$$
proved

MCQ

1. Question

Write the correct alternative in the following:

If
$$x = a \cos nt - b \sin nt$$
, then $\frac{d^2x}{dt^2}$ is

- A. n²x
- $B. -n^2x$
- C. -nx
- D. nx

Answer

Given:

x=a cos nt-b sin nt

$$\frac{dx}{dt} = -an \sin nt - bn \cos nt$$

$$\frac{d^2x}{dt^2} = -an^2 \cos nt + bn^2 \sin nt$$

$$= -n^2$$
 (a cos nt-b sin nt)

$$= - n^2 x$$

2. Question

Write the correct alternative in the following:

If
$$x = at^2$$
, $y = 2at$, then $\frac{d^2y}{dx^2} =$

A.
$$-\frac{1}{t^2}$$

B.
$$\frac{1}{2 \operatorname{at}^3}$$

C.
$$-\frac{1}{t^3}$$

D.
$$-\frac{1}{2 \text{ at}^3}$$

Answer

Given:

$$y = 2at, x = at^2$$

$$\frac{dx}{dt} = 2at$$
; $\frac{dy}{dt} = 2a$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dx}}$$

$$=\frac{1}{t}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

$$=\frac{\frac{-1}{t^2}}{2at}$$

$$=\frac{-1}{2at^3}$$

3. Question

Write the correct alternative in the following:

If y = axⁿ⁺¹ + b x⁻ⁿ, then
$$x^2 \frac{d^2y}{dx^2}$$
 =

B.
$$n(n + 1)y$$

Answer

Given:

$$y = ax^{n+1} + bx^{-n}$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = (n+1)ax^n + (-n)bx^{-n-1}$$

$$\frac{d^2y}{dx^2} = n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2}$$

$$x^{2} \frac{d^{2}y}{dx^{2}} = x^{2} \{ n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2} \}$$

$$= n(n+1)a x^{n-1+2} + n(n+1)bx^{-n-2+2}$$

$$=n(n+1)[a x^{n+1} + bx^{-n}]$$

$$=n(n+1)y$$

4. Question

$$\frac{d^{20}}{dx^{20}} \left(2\cos x \cos 3x \right) =$$

A.
$$2^{20}(\cos 2x - 2^{20}\cos 4x)$$

B.
$$2^{20}(\cos 2x + 2^{20}\cos 4x)$$

C.
$$2^{20}(\sin 2x - 2^{20} \sin 4x)$$

D.
$$2^{20}(\sin 2x - 2^{20} \sin 4x)$$

Answer

Given:

Let $y=2 \cos x \cos 3x$

$$2\cos A\cos B = \cos\left(\frac{A+B}{2}\right) + \cos\left(\frac{A-B}{2}\right)$$

So
$$y=\cos 2x+\cos 4x$$

$$\frac{dy}{dx} = -2\sin 2x - 4\sin 4x$$

$$=(-2)^1$$
 (sin 2x+2¹ sin 4x)

$$\frac{d^2y}{dx^2} = -4\cos 2x - 16\cos 4x$$

$$=(-2)^2 (\cos 2x+2^2 \cos 4x)$$

$$\frac{d^3y}{dx^3} = 8\sin 2x + 64\sin 4x$$

$$=(-2)^3 (\cos 2x+2^3 \cos 4x)$$

$$\frac{d^4y}{dx^4} = 16\cos 2x + 256\cos 4x$$

$$=(-2)^4 (\cos 2x+2^4 \cos 4x)$$

For every odd degree; differential = = $(-2)^n$ (cos 2x+2ⁿ cos 4x);n={1,3,5...}

For every even degree; differential = $(-2)^n$ (cos 2x+2ⁿ cos 4x);n={0,2,4...}

So,
$$\frac{d^{20}y}{dx^{20}} = (-2)^{20}(\cos 2x + 2^{20}\cos 4x)$$

$$=(-2)^{20} (\cos 2x + 2^{20} \cos 4x)$$

5. Question

If x =
$$t^2$$
, y = t^3 , then $\frac{d^2y}{dx^2}$ =

A.
$$\frac{3}{2}$$

B.
$$\frac{3}{4t}$$

c.
$$\frac{3}{2t}$$

D.
$$\frac{3t}{2}$$

Given:

$$x = t^2; y = t^3$$

$$\frac{dy}{dt}=3t^2;\,\frac{dx}{dt}=2t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t}{2}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{\frac{3t}{2}}{2t}$$

$$=\frac{3}{4}$$

6. Question

Write the correct alternative in the following:

If $y = a + bx^2$, a, b arbitrary constants, then

A.
$$\frac{d^2y}{dx^2} = 2xy$$

$$B. x \frac{d^2y}{dx^2} = y_1$$

$$C. x \frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 0$$

D.
$$x \frac{d^2y}{dx^2} = 2xy$$

Answer

Given:

$$y = a + bx^2$$

$$\frac{dy}{dx} = 2bx$$

$$\frac{d^2y}{dx^2} = 2b \neq 2xy$$

$$x\frac{d^2y}{dx^2} = 2bx$$

$$=\frac{dy}{dx}$$

$$x\frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 2bx - 2bx + y$$

$$= y$$

7. Question

If $f(x) = (\cos x + i \sin x) (\cos 2x + i \sin 2x) (\cos 3x + i \sin 3x) (\cos nx + i \sin nx)$ and f(1) = 1, then f''(1) is equal to

A.
$$\frac{n(n+1)}{2}$$

B.
$$\left\{\frac{n(n+1)}{2}\right\}^2$$

$$\mathsf{C.} - \left\{ \frac{\mathsf{n} \left(\mathsf{n} + 1 \right)}{2} \right\}^2$$

D. none of these

Answer

Given:

$$f(x) = (\cos x + i \sin x) (\cos 2x + i \sin 2x) (\cos 3x + i \sin 3x) (\cos nx + i \sin nx)$$

Since
$$e^{ix} = \cos x + i \sin x$$

So,
$$f(x) = e^{ix} \times e^{i2x} \times e^{i3x} \times e^{i4x} \times ... \times e^{inx}$$

$$f(x) = e^{ix(1+2+3+4+\cdots+n)}$$

$$=e^{ix\frac{n(n+1)}{2}}$$

$$f(1) = e^{\frac{in(n+1)}{2}}$$

$$f'(x) = ix \frac{n(n+1)}{2} e^{ix \frac{n(n+1)}{2}}$$

Since
$$e^{ix} = \cos x + i \sin x$$

So, $f(x) = e^{ix} \times e^{i2x} \times e^{i3x} \times e^{i4x} \times ... \times e^{inx}$
 $f(x) = e^{ix(1+2+3+4+\cdots+n)}$
 $= e^{ix\frac{n(n+1)}{2}}$
 $f'(x) = ix\frac{n(n+1)}{2}e^{ix\frac{n(n+1)}{2}}$
 $f''(x) = i^2x^2\left(\frac{n(n+1)}{2}\right)^2e^{ix\frac{n(n+1)}{2}}$
 $f''(x) = -x^2\left(\frac{n(n+1)}{2}\right)^2e^{ix\frac{n(n+1)}{2}}$
 $f''(x) = -1^2\left(\frac{n(n+1)}{2}\right)^2\times 1$
 $= -\left(\frac{n(n+1)}{2}\right)^2$
8. Question
Write the correct alternative in the following:

$$f''(x) = -x^2 \left(\frac{n(n+1)}{2}\right)^2 e^{ix\frac{n(n+1)}{2}}$$

$$f''(1) = -1^2 \left(\frac{n(n+1)}{2}\right)^2 \times 1$$

$$= -\left(\frac{n(n+1)}{2}\right)^2$$

Write the correct alternative in the following:

If y = a sin mx + b cos mx, then
$$\frac{d^2y}{dx^2}$$
 is equal to

Answer

Given:

 $y = a \sin mx + b \cos mx$

$$\frac{dy}{dx} = ma\cos mx - mb\sin mx$$

$$\frac{d^2y}{dx^2} = -m^2a\sin mx - m^2b\cos mx$$

$$=-m^2[a\sin mx + b\cos mx]$$

$$=-m^2y$$

9. Ouestion

Write the correct alternative in the following:

If
$$f(x) = \frac{\sin^{-1} x}{\sqrt{(1-x^2)}}$$
 then $(1-x^2)$ f' (x) - $xf(x) =$

A. 1

B. -1

C. 0

D. none of these

Answer

Given:

$$y = f(x) = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$

B. -1

C. 0

D. none of these

Answer

Given:

$$y = f(x) = \frac{\sin^{-1} x}{\sqrt{(1-x^2)}}$$

$$\frac{dy}{dx} = \frac{1}{\left(\sqrt{(1-x^2)}\right)^2} \left\{ \frac{1}{\sqrt{(1-x^2)}} \sqrt{(1-x^2)} - \sin^{-1} x \frac{(-2x)}{2\sqrt{(1-x^2)}} \right\}$$

$$= \frac{1}{\left(\sqrt{(1-x^2)}\right)^2} \left\{ 1 + \frac{x \sin^{-1} x}{\sqrt{(1-x^2)}} \right\}$$

$$=\frac{1+xy}{(1-x^2)}$$

$$f'(x) = \frac{1 + xf(x)}{(1 - x^2)}$$

$$(1-x^2)f'(x) = 1 + xf(x)$$

$$(1-x^2)f'(x) - xf(x) = 1$$

10. Question

Write the correct alternative in the following:

$$\text{If } y = \tan^{-1}\left\{\frac{\log_e\left(e/x^2\right)}{\log_e\left(ex^2\right)}\right\} + \tan^{-1}\left(\frac{3 + 2\log_e x}{1 - 6\log_e x}\right), \text{then } \frac{d^2y}{dx^2} = \frac{1}{2}\left(\frac{3 + 2\log_e x}{1 - 6\log_e x}\right)$$

A. 2

B. 1

C. 0

D. -1

Answer

Given:

$$y = tan^{-1} \left\{ \frac{log_e\left(\frac{e}{x^2}\right)}{log_e(ex^2)} \right\} + tan^{-1} \left\{ \frac{3 + 2 log_e x}{1 - 6 log_e x} \right\}$$

$$y = tan^{-1} \left\{ \frac{log_e e - log_e x^2}{log_e e + log_e x^2} \right\} + tan^{-1} \left\{ \frac{3 log_e e + 2 log_e x}{1 - 3 log_e e \times 2 log_e x} \right\}$$

$$y = tan^{-1} \left\{ \frac{1 - log_e x^2}{1 + log_e x^2} \right\} + tan^{-1} (3 log_e e) + tan^{-1} (2 log_e x)$$

$$y = tan^{-1} \left\{ \frac{log_e e - 2log_e x}{1 + log_e e \times 2log_e x} \right\} + tan^{-1} (3log_e e) + tan^{-1} (2log_e x)$$

$$y = tan^{-1}(\log_e e) - tan^{-1}(2\log_e x) + tan^{-1}(3\log_e e) + tan^{-1}(2\log_e x)$$

$$y = tan^{-1}(1) + tan^{-1}(3)$$

$$y = \tan^{-1}\left(\frac{1+3}{1-3}\right) = \tan^{-1}(-2)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

11. Question

Write the correct alternative in the following:

com ative (Let f(x) be a polynomial. Then, the second order derivative of $f(e^x)$ is

A.
$$f''(e^x) e^{2x} + f'(e^x) e^x$$

B.
$$f''(e^x) e^x + f'(e^x)$$

C.
$$f''(e^x) e^{2x} + f''(e^x) e^x$$

Answer

Given:

$$\frac{d}{dx} \left[\frac{d}{dx} f(e^x) \right] = ?$$

Since,
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

So,
$$\frac{d}{dx}f(e^x) = f'(e^x)e^x$$

Also,
$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + g'(x)f(x)$$

So,
$$\frac{d}{dx}f'(e^x)e^x = f''(x)e^x e^x + e^x f'(x)$$

$$= f''(x)e^{2x} + e^{x}f'(x)$$

12. Question

If
$$y = a \cos (\log_e x) + b \sin (\log_e x)$$
, then $x^2 y_2 + xy_1 =$

B. y

C. -y

D. none of these

Answer

Given:

$$y = a\cos(\log_e x) + b\sin(\log_e x)$$

$$\frac{dy}{dx} = -a \sin(\log_e x) \frac{1}{x} + b \cos(\log_e x) \frac{1}{x}$$

$$y_1 = -a \sin(\log_e x) + b \cos(\log_e x)$$

$$\frac{d^2y}{dx^2} = -a\cos(\log_e x)\frac{1}{x^2} + \frac{1}{x^2}a\sin(\log_e x) - b\sin(\log_e x)\frac{1}{x^2} + b\cos(\log_e x)\frac{1}{x^2}$$

$$x^2$$
 $y_2 = -a\cos(\log_e x) + a\sin(\log_e x) - b\sin(\log_e x) - b\cos(\log_e x)$

$$x^2 y_2 + xy_1 = -a \cos(\log_e x) + a \sin(\log_e x) - b \sin(\log_e x) - b \cos(\log_e x) - a \sin(\log_e x) + a \cos(\log_e x)$$

$$= -a \sin(\log_e x) - b \cos(\log_e x)$$

$$r - =$$

$$= -a \sin(\log_e x) - b \cos(\log_e x)$$

$$= -y$$
13. Question

Write the correct alternative in the following:

If $x = 2at$, $y = at^2$, where a is a constant, then $\frac{d^2y}{dx^2}$ at $x = \frac{1}{2}$ is

A. $1/2a$
B. 1
C. $2a$
D. none of these

Answer

Given:

 $x = 2at$, $y = at^2$

A.
$$1/2a$$

$$x = 2at. v = at^2$$

$$\frac{dx}{dt} = 2a$$
; $\frac{dy}{dt} = 2at$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = t$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{1}{2a}$$

14. Question

If
$$x = f(t)$$
 and $y = g(t)$, then $\frac{d^2y}{dx^2}$ is equal to

A.
$$\frac{f'g''-g'f''}{(f')^3}$$

$$\text{B.}\ \frac{f\,'g\,"\!-g\,'f\,"}{\left(f\,'\right)^2}$$

C.
$$\frac{g"}{f"}$$

D.
$$\frac{f''g' - g''f'}{(g')^3}$$

Answer

Given:

$$x = f(t)$$
 and $y = g(t)$

$$\frac{dx}{dt} = f'(t); \frac{dy}{dt} = g'(t)$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\mathrm{g}'(t)}{\mathrm{f}'(t)}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}}$$

$$= \frac{1}{f'(t)} \Big\{ \frac{1}{f'(t)^2} (g''(t)f'(t) - f''(t)g'(t)) \Big\}$$

$$= \frac{(g''(t)f'(t) - f''(t)g'(t))}{(f'(t))^3}$$

15. Question

Write the correct alternative in the following:

If $y = \sin (m \sin^{-1} x)$, then $(1 - x^2) y_2 - xy_1$ is equal to

D. none of these

Answer

Given:

$$y=\,\sin(m\,sin^{-1}\,x)$$

$$\frac{dy}{dx} = m \cos(m \sin^{-1} x) \frac{1}{\sqrt{(1-x^2)}}$$

$$x\frac{dy}{dx} = \cos(m\sin^{-1}x)\frac{mx}{\sqrt{(1-x^2)}}$$

$$= m \left\{ \frac{-m \sin(m \sin^{-1} x) \sqrt{1 - x^2} \frac{1}{\sqrt{1 - x^2}} - \frac{1}{2\sqrt{(1 - x^2)}} (-2x) \cos(m \sin^{-1} x)}{\left(\sqrt{(1 - x^2)}\right)^2} \right\}$$

$$= \frac{m}{(1-x^2)} \Biggl\{ -m \; \sin(m \; \sin^{-1}x) + \frac{x}{\sqrt{(1-x^2)}} \; \cos(m \sin^{-1}x) \; \Biggr\}$$

$$(1-x^2) \ y_2 = m \left\{ -m \ \sin(m \ \sin^{-1} x) + \frac{x}{\sqrt{(1-x^2}} \cos(m \sin^{-1} x) \right\}$$

$$= -m^2 \sin(m \sin^{-1} x) + \frac{mx}{\sqrt{(1-x^2)}} \cos(m \sin^{-1} x)$$

$$(1 - x^2) y_2 - xy_1$$

$$= -m^2 \, \sin(m \, \sin^{-1} x) + \frac{mx}{\sqrt{(1-x^2)}} \cos(m \sin^{-1} x) \, - \, \cos(m \sin^{-1} x) \frac{mx}{\sqrt{(1-x^2)}}$$

$$= -m^2 \sin(m \sin^{-1} x)$$

$$=-m^2y$$

16. Question

Write the correct alternative in the following:

$$= -m^2 \sin(m \sin^{-1} x)$$

$$= -m^2 y$$
16. Question
Write the correct alternative in the following:
If $y = (\sin^{-1} x)^2$, then $(1 - x^2) y_2$ is equal to

A. $xy_1 + 2$
B. $xy_1 - 2$
C. $-xy_1 + 2$
D. none of these

Answer

Given:
$$y = (\sin^{-1} x)^2$$

$$\frac{dy}{dx} = 2\sin^{-1} x \frac{1}{\sqrt{1-x^2}}$$

A.
$$xy_1 + 2$$

B.
$$xy_1 - 2$$

C.
$$-xy_1 + 2$$

D. none of these

Answer

Given:

$$y = (\sin^{-1} x)^2$$

$$\frac{dy}{dx}=2\sin^{-1}x\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d^2y}{dx^2} = 2\left\{ \left(\frac{1}{\sqrt{1-x^2}}\right)^2 + \sin^{-1}x \frac{\frac{2x}{2\sqrt{1-x^2}}}{\left(\sqrt{1-x^2}\right)^2} \right\}$$

$$= 2 \left\{ \frac{1}{1 - x^2} + \sin^{-1} x \frac{x}{\left(\sqrt{1 - x^2}\right)^{3/2}} \right\}$$

(1 -
$$x^2$$
) $y_2 = 2 \left\{ 1 + \sin^{-1} x \frac{x}{\sqrt{1 - x^2}} \right\}$

$$= 2 + x \Big\{ 2 \sin^{-1} x \frac{1}{\sqrt{1-x^2}} \Big\}$$

$$= 2 + xy_1$$

17. Question

If $y = e^{\tan x}$, then $(\cos^2 x)y_2 =$

A. $(1 - \sin 2x) y_1$

B. $-(1 + \sin 2x) y_1$

C. $(1 + \sin 2x) y_1$

D. none of these

Answer

Given:

$$y = e^{tanx}$$

$$\frac{dy}{dx} = e^{tan x} (sec x)^2$$

$$\frac{d^2y}{dx^2} = e^{\tan x} (\sec x)^2 (\sec x)^2 + e^{\tan x} \times 2 \sec x \times \tan x \times \sec x$$

$$= e^{\tan x} (\sec x)^2 [(\sec x)^2 + 2 \tan x]$$

$$(\cos^2 x)y_2 = e^{\tan x}[(\sec x)^2 + 2\tan x]$$

$$= e^{tan x} \left[\frac{1 + 2 \sin x \cos x}{(\cos x)^2} \right]$$

$$= e^{\tan x} (\sec x)^2 [1 + 2 \sin x \cos x]$$

$$= e^{\tan x}(\sec x)^2[1 + \sin 2x]$$

$$= [1 + \sin 2x] y_1$$

18. Question

Write the correct alternative in the following:

$$= e^{\tan x}(\sec x)^2[(\sec x)^2 + 2\tan x]$$

$$(\cos^2 x)y_2 = e^{\tan x}[(\sec x)^2 + 2\tan x]$$

$$= e^{\tan x} \left[\frac{1+2\sin x\cos x}{(\cos x)^2}\right]$$

$$= e^{\tan x}(\sec x)^2[1+2\sin x\cos x]$$

$$= e^{\tan x}(\sec x)^2[1+\sin 2x]$$

$$= [1+\sin 2x]y_1$$
18. Question

Write the correct alternative in the following:

If $y = \frac{2}{\sqrt{a^2-b^2}}\tan^{-1}\left(\frac{a-b}{a+b}\tan\frac{x}{2}\right)$, $a > b > 0$; then

$$A. \ y_1 = \frac{-1}{a + b \cos x}$$

$$B. y_2 = \frac{b \sin x}{\left(a + b \cos x\right)^2}$$

$$C. y_1 = \frac{1}{a - b \cos x}$$

D.
$$y_2 = \frac{-b\sin x}{(a - b\cos x)^2}$$

Answer

$$y = \frac{2}{\sqrt{(a^2 - b^2)}} tan^{-1} \left(\frac{a - b}{a + b} tan \frac{x}{2} \right)$$

$$\begin{split} \frac{dy}{dx} &= \frac{2}{\sqrt{(a^2 - b^2)}} \left(\frac{1}{1 + \left(\frac{a - b}{a + b} \tan \frac{x}{2} \right)^2} \right) \left(\frac{a - b}{a + b} \right) \left(\sec \frac{x}{2} \right)^2 \\ &= \frac{2}{\sqrt{(a^2 - b^2)}} \left(\frac{(a + b)^2}{(a + b)^2 + (a - b)^2 \left(\tan \frac{x}{2} \right)^2} \right) \left(\frac{a - b}{a + b} \right) \left(\sec \frac{x}{2} \right)^2 \\ &= \frac{2}{\sqrt{(a^2 - b^2)}} \left(\frac{(a + b)}{a^2 (1 + (\tan x)^2) + b^2 (1 + (\tan x)^2) + 2ab(1 - (\tan x)^2)} \right) (a - b) \left(\sec \frac{x}{2} \right)^2 \\ &= 2 \left(\frac{1}{a^2 \left(1 + \left(\tan \frac{x}{2} \right)^2 \right) + b^2 \left(1 + \left(\tan \frac{x}{2} \right)^2 \right) + 2ab \left(1 - \left(\tan \frac{x}{2} \right)^2 \right)} \right) \sqrt{(a^2 - b^2)} \left(\sec \frac{x}{2} \right)^2 \end{split}$$

Divide numerator and denominator by $\left(1 + \left(\tan \frac{x}{2}\right)^2\right)$;

We get:

$$= 2 \left(\frac{1}{a^2 + b^2 + 2ab} \left(\frac{1 - \left(\tan \frac{x}{2} \right)^2}{1 + \left(\tan \frac{x}{2} \right)^2} \right) \sqrt{(a^2 - b^2) \left(\sec \frac{x}{2} \right)^2 \frac{1}{1 + \left(\tan \frac{x}{2} \right)^2}} \right)$$

$$= 2 \left(\frac{1}{a^2 + b^2 + 2ab \cos x} \right) \sqrt{(a^2 - b^2) \left(\sec \frac{x}{2} \right)^2} \frac{1}{\left(\sec \frac{x}{2} \right)^2}$$

$$= 2 \left(\frac{1}{a^2 + b^2 + 2ab \cos x} \right) \sqrt{(a^2 - b^2)} \left(\frac{1}{a^2 + b^2 + 2ab \cos x} \right) \sqrt{(a^2 - b^2)}$$

$$= 2 \left(\frac{1}{a^2 + b^2 + 2ab \cos x} \right) \sqrt{(a^2 - b^2)} \left(\frac{1}{a^2 + b^2 + 2ab \cos x} \right)^2 \left\{ -2ab \sin x \right\}$$

19. Question

Write the correct alternative in the following:

If
$$y = \frac{ax + b}{x^2 + c}$$
, then $(2xy_1 + y)y_3 =$

A.
$$3(xy_2 + y_1)y_2$$

B.
$$3(xy_2 + y_2)y_2$$

C.
$$3(xy_2 + y_1)y_1$$

D. none of these

Answer

$$y = \frac{ax + b}{x^2 + c}$$

$$\frac{dy}{dx} = \frac{a(x^2 + c) - 2x(ax + b)}{(x^2 + c)^2}$$

$$= \frac{-ax^2 - 2bx + ac}{(x^2 + c)^2}$$

$$2xy_{1} = \frac{-ax^{3} - 2bx^{2} + acx}{(x^{2} + c)^{2}}$$

$$\frac{d^2y}{dx^2} = \frac{(-2ax - 2b)(x^2 + c)^2 - 2(2x)(x^2 + c)(-ax^2 - 2bx + ac)}{(x^2 + c)^4}$$

Write the correct alternative in the following:

If
$$y = log_e \left(\frac{x}{a + bx}\right)^2$$
, then $x^3 y_2 =$

A.
$$(xy_1 - y)^2$$

B.
$$(x + y)^2$$

$$C.\left(\frac{y-xy_1}{y_1}\right)^2$$

$$y = \left(\log_{e}\left(\frac{x}{a + bx}\right)\right)^{2}$$

$$= 2 \log_e \left(\frac{x}{a + bx} \right)$$

B.
$$(x + y)^2$$

C. $\left(\frac{y - xy_1}{y_1}\right)^2$

D. none of these

Answer

Given:

$$y = \left(\log_e\left(\frac{x}{a + bx}\right)\right)^2$$

$$= 2\log_e\left(\frac{x}{a + bx}\right)$$

$$\frac{dy}{dx} = 2\left(\frac{1}{\frac{x}{a + bx}}\right)\left[\frac{a + bx - bx}{(a + bx)^2}\right]$$

$$= 2\left(\frac{a + bx}{x}\right)\left[\frac{a}{(a + bx)^2}\right]$$

$$= \frac{2a}{x(a + bx)}$$

$$= \frac{2a}{x(a + bx)}$$

$$=2\left(\frac{a+bx}{x}\right)\left[\frac{a}{(a+bx)^2}\right]$$

$$=\frac{2a}{x(a+bx)}$$

$$=\frac{2a}{(ax+bx^2)}$$

$$x \frac{dy}{dx} = \frac{2ax}{(ax + bx^2)}$$

$$\frac{d^2y}{dx^2} = 2a \left\{ \frac{-(a+2bx)}{(ax+bx^2)^2} \right\}$$

$$=(-a-2bx)\frac{dy}{dx}$$

$$x^{3} \frac{d^{2}y}{dx^{2}} = -x^{3}(a + 2bx) \frac{dy}{dx}$$

21. Question

Write the correct alternative in the following:

If x = f(t) cos t - f'(t) sin t and y = f(t) sin t + f'(t) cos t, then $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 =$

A.
$$f(t) - f''(t)$$

B.
$$\{f(t) - f''(t)\}^2$$

C.
$$\{f(t) + f''(t)\}^2$$

D. none of these

Answer

Given:

$$x = f(t) \cos t - f'(t) \sin t$$

$$y = f(t) \sin t + f'(t) \cos t$$

$$\frac{dx}{dt} = f'(t)\cos t - f(t)\sin t - f'(t)\sin t - f'(t)\cos t$$

$$= -f(t)\sin t - f''(t)\sin t$$

$$= -\sin t \left[f(t) + f''(t) \right]$$

$$\left(\frac{dx}{dt}\right)^2 = \left\{-\sin t \left[f(t) + f''(t)\right]\right\}^2$$

$$= (\sin t)^2 \{f(t) + f''(t)\}^2$$

$$\frac{dy}{dt} = f'(t)\sin t + f(t)\cos t + f'(t)\cos t - f'(t)\sin t$$

$$= f(t) \cos t + f''(t) \cos t$$

$$= \cos t [f(t) + f''(t)]$$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \{\cos t \left[f(t) + f''(t)\right]\}^2$$

$$= (\cos t)^2 \{f(t) + f''(t)\}^2$$

$$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = (\sin t)^{2} \{f(t) + f''(t)\}^{2} + (\cos t)^{2} \{f(t) + f''(t)\}^{2}$$

$$= \{f(t) + f''(t)\}^2$$

22. Question

Write the correct alternative in the following:

If
$$y^{1/n} + y^{-1/n} = 2x$$
, then $(x^2 - 1)y_2 + xy_1 =$

D. none of these

Answer

$$y^{1/n} + y^{-1/n} = 2x$$

$$\frac{1}{n}y^{\frac{1}{n}-1}\frac{dy}{dx} + \frac{-1}{n}y^{\frac{-1}{n}-1}\frac{dy}{dx} = 2$$

$$\frac{1}{n}\frac{dy}{dx}\left\{y_{n}^{\frac{1}{n}-1}-y_{n}^{\frac{-1}{n}-1}\right\}=2$$

Write the correct alternative in the following:

If
$$\frac{d}{dx} \left\{ x^n - a_1 x^{n-1} + a_2 x^{n-2} + ... + (-1)^n a_n \right\}$$

 $e^x = x^n e^x$.

Then the value of a_r , $0 < r \le n$, is equal to

A.
$$\frac{n!}{r!}$$

B.
$$\frac{(n-r)!}{r!}$$

$$\mathsf{C.}\;\frac{n!}{(n-r)!}$$

D. none of these

Answer

Given:

$$\frac{d}{dx}\{x^{n}-a_{1}x^{n-1}+a_{2}x^{n-2}+\cdots+(-1)^{n}a_{n}\}e^{x}=x^{n}e^{x}$$

$$\frac{d}{dx}\{a_0(-1)^0x^n+a_1(-1)^1x^{n-1}+a_2(-1)^2x^{n-2}+\cdots+(-1)^na_n\}e^x$$

$$\frac{d}{dx}(x-1)^n$$

$$(x-1)^n = \sum_{k=1}^n \binom{n}{k} x^{n-k} (-1)^k$$

So, at k=r;

$$a_r = \binom{n}{r}$$

Also,
$$\binom{n}{r} = \binom{n}{n-r}$$

So,
$$a_r = \binom{n}{n-r}$$

24. Question

Write the correct alternative in the following:

If
$$y = x^{n-1} \log x$$
, then $x^2 y_2 + (3 - 2n) xy_1$ is equal to

A.
$$-(n-1)^2$$
 y

$$C. - n^2y$$

Answer

Given:

$$y = x^{n-1} \log x$$

$$\frac{dy}{dx} = (n-1)x^{n-2}\log x + \frac{1}{x}x^{n-1}$$

$$= (n-1)x^{n-2}\log x + x^{n-2}$$

$$= x^{n-2}[(n-1)\log x + 1]$$

$$xy_1 = x^{n-1}[(n-1)\log x + 1]$$

$$= (n-1)y + x^{n-1}$$

$$(3-2n)xy_1 = (3-2n)[(n-1)y + x^{n-1}]$$

=
$$(3n-3-2n^2+2n)y+3x^{n-1}-2nx^{n-1}$$
 (1)

$$\frac{d^2y}{dx^2} = (n-1)(n-2)x^{n-3}\log x + \frac{1}{x}(n-1)x^{n-2} + (n-2)x^{n-3}$$

$$=(n-1)(n-2)x^{n-3}\log x+(n-1)x^{n-3}+(n-2)x^{n-3}$$

$$= x^{n-3}[(n-1)(n-2)\log x + (n-1) + (n-2)]$$

$$x^2 y_2 = x^{n-1}[(n-1)(n-2)\log x + (2n-3)]$$

$$= (n^2 - 3n + 2)y + 2nx^{n-1} - 3x^{n-1} (2)$$

$$x^2 y_2 + (3 - 2n) xy_1$$

$$= (n^2 - 3n + 2)y + 2nx^{n-1} - 3x^{n-1} + (3n - 3 - 2n^2 + 2n)y + 3x^{n-1} - 2nx^{n-1}$$

$$= (-n^2 + 2n - 1)y$$

$$= -(n-1)^2 y$$

25. Question

Write the correct alternative in the following:

If $xy - log_e y = 1$ satisfies the equation $x(yy_2 + y_1^2) - y_2 + \lambda yy_1 = 0$, then $\lambda =$

B. 1

C. 3

D. none of these

Answer

Given:

$$xy - \log_e y = 1$$

$$xy = \log_e y + 1$$

Differentiate w.r.t. 'x' on both sides;

$$y + x \frac{dy}{dx} = \frac{1}{y} \frac{dy}{dx}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} \left(\frac{1}{y} - x \right) = y$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{y}^2}{(1 - \mathrm{xy})}$$

$$\left(\frac{dy}{dx}\right)^2 = \left[\frac{y^2}{(1-xy)}\right]^2$$

$$=\frac{y^4}{(1-xy)^2}$$

$$\frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{d}{dx} \left[\frac{y^2}{(1 - xy)} \right]$$

$$= \frac{1}{(1-xy)^2} \left\{ 2y \frac{dy}{dx} (1-xy) - y^2 \left(-y + x \frac{dy}{dx} \right) \right\}$$

$$=\frac{1}{(1-xy)^2}\Bigl\{2y\frac{dy}{dx}(1-xy)-y^2\Bigl(-y+x\frac{dy}{dx}\Bigr)\Bigr\}$$

$$=\frac{1}{(1-xy)^2}\left\{2y\frac{dy}{dx}\frac{y^2}{\frac{dy}{dx}}+y^3+xy^2\frac{dy}{dx}\right\}$$

$$= \frac{1}{(1-xy)^2} \left\{ 2y^3 + y^3 + xy^2 \frac{dy}{dx} \right\}$$

$$=\frac{1}{(1-yy)^2}\left\{3y^3+xy^2\frac{dy}{dy}\right\}$$

$$= \frac{y^2}{(1-xy)^2} \left\{ 3y + x \frac{dy}{dx} \right\}$$

$$y \frac{d^2y}{dy^2} = \frac{y^3}{(1-xy)^2} \left\{ 3y + x \frac{dy}{dx} \right\}$$

$$= \frac{1}{(1 - xy)^2} \left\{ 2y \frac{dy}{dx} (1 - xy) - y^2 \left(-y + x \frac{dy}{dx} \right) \right\}$$

$$= \frac{1}{(1 - xy)^2} \left\{ 2y \frac{dy}{dx} \frac{y^2}{dx} + y^3 + xy^2 \frac{dy}{dx} \right\}$$

$$= \frac{1}{(1 - xy)^2} \left\{ 2y^3 + y^3 + xy^2 \frac{dy}{dx} \right\}$$

$$= \frac{1}{(1 - xy)^2} \left\{ 3y^3 + xy^2 \frac{dy}{dx} \right\}$$

$$= \frac{y^2}{(1 - xy)^2} \left\{ 3y + x \frac{dy}{dx} \right\}$$

$$y \frac{d^2y}{dy^2} = \frac{y^3}{(1 - xy)^2} \left\{ 3y + x \frac{dy}{dx} \right\}$$

$$y \frac{d^2y}{dy^2} + \left(\frac{dy}{dx} \right)^2 = \frac{y^3}{(1 - xy)^2} \left\{ 3y + x \frac{dy}{dx} \right\} + \frac{y^4}{(1 - xy)^2}$$

$$= \frac{y^3}{(1 - xy)^2} \left\{ 3y + x \frac{dy}{dx} + y \right\}$$

$$= \frac{y^3}{(1 - xy)^2} \left\{ 4y + x \frac{dy}{dx} \right\}$$

$$\left[\frac{d^2y}{(1 - xy)^2} \left\{ 4y + x \frac{dy}{dx} \right\} \right]$$

$$=\frac{y^3}{(1-xy)^2}\left\{3y+x\frac{dy}{dx}+y\right\}$$

$$=\frac{y^3}{(1-yy)^2}\left\{4y+x\frac{dy}{dy}\right\}$$

$$x\left[y\frac{d^2y}{dy^2} + \left(\frac{dy}{dx}\right)^2\right] = \frac{y^3x}{(1-xy)^2}\Big\{4y + x\frac{dy}{dx}\Big\}$$

$$x \left[y \frac{d^2 y}{dy^2} + \left(\frac{dy}{dx} \right)^2 \right] - \frac{d^2 y}{dy^2} = \frac{y^3 x}{(1 - xy)^2} \left\{ 4y + x \frac{dy}{dx} \right\} - \frac{y^2}{(1 - xy)^2} \left\{ 3y + x \frac{dy}{dx} \right\}$$

$$= \frac{y^2}{(1-xy)^2} \left\{ xy \left(4y + x \frac{dy}{dx} \right) - 3y - x \frac{dy}{dx} \right\}$$

$$= \frac{y^2}{(1-xy)^2} \left\{ 4xy^2 + x^2y \frac{dy}{dx} - 3y - x \frac{dy}{dx} \right\}$$

$$= \frac{y^2}{(1-xy)^2} \Big\{ y(4xy-3) + x \frac{dy}{dx}(xy-1) \Big\}$$

$$= \frac{y^2}{(1-xy)^2} \Big\{ y(xy+3xy-3) - x \frac{dy}{dx} (1-xy) \Big\}$$

$$= \frac{y^2}{(1-xy)^2} \left\{ y(xy-3(1-xy)) - x \frac{dy}{dx} \frac{y^2}{dx} \right\}$$

$$= \frac{y^2}{(1-xy)^2} \left\{ y \left(xy - 3 \frac{y^2}{\frac{dy}{dy}} \right) - xy^2 \right\}$$

$$= \frac{y^2}{(1-xy)^2} \left\{ xy^2 - 3\frac{y^3}{\frac{dy}{dx}} - xy^2 \right\}$$

$$=-\frac{y^2}{(1-xy)^2}\Bigg\{3\frac{y^3}{\frac{dy}{dx}}\Bigg\}$$

$$= -\frac{y^2}{(1-xy)^2} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}$$
Since $x \left[y \frac{d^2y}{dy^2} + \left(\frac{dy}{dx} \right)^2 \right] - \frac{d^2y}{dy^2} + \lambda y \frac{dy}{dx} = 0$
So, $x \left[y \frac{d^2y}{dy^2} + \left(\frac{dy}{dx} \right)^2 \right] - \frac{d^2y}{dy^2} = -\lambda y \frac{dy}{dx}$

$$-\lambda y \frac{dy}{dx} = -\frac{y^2}{(1-xy)^2} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}$$

$$-\lambda y \frac{y^2}{(1-xy)} = -\frac{y^2}{(1-xy)^2} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}$$

$$\lambda y = \frac{1}{(1-xy)} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}$$

$$\lambda = \frac{3y^2}{(1-xy)^2}$$

So,
$$x \left[y \frac{d^2y}{dy^2} + \left(\frac{dy}{dx} \right)^2 \right] - \frac{d^2y}{dy^2} = -\lambda y \frac{dy}{dx}$$

$$-\lambda y \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y^2}{(1-xy)^2} \left\{ 3 \frac{y^3}{\frac{\mathrm{d}y}{\mathrm{d}x}} \right\}$$

$$-\lambda y \frac{y^2}{(1 - xy)} = -\frac{y^2}{(1 - xy)^2} \left\{ 3 \frac{y^3}{\frac{dy}{dy}} \right\}$$

$$\lambda y = \frac{1}{(1-xy)} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}$$

$$\lambda = \frac{3y^2}{(1 - xy)\frac{dy}{dx}}$$

$$\lambda = \frac{3\frac{dy}{dx}}{\frac{dy}{dx}}$$

$$\lambda = 3$$

Write the correct alternative in the following:

If
$$y^2 = ax^2 + bx + c$$
, then $y^3 \frac{d^2y}{dx^2}$ is

A. a constant

B. a function of x only

C. a function of y only

D. a function of x and y

Answer

Given:

$$v^2 = ax^2 + bx + c$$

$$y = \sqrt{(ax^2 + bx + c)}$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{(ax^2 + bx + c)}} \times (2ax + b)$$

$$\frac{d^2y}{dx^2}$$

$$=\frac{1}{2}\left\{\frac{\left(2a\times\sqrt{ax^2+bx+c}\right)-\left((2ax+b)\times\frac{1}{2\sqrt{(ax^2+bx+c)}}\times(2ax+b)\right)}{\left(\sqrt{(ax^2+bx+c)}\right)^2}\right\}$$

$$= \frac{1}{2} \left\{ \frac{4a(ax^2 + bx + c) - (2ax + b)^2}{2\sqrt{(ax^2 + bx + c)}} \right\}$$

$$= \frac{1}{2} \left\{ \frac{4a^2x^2 + 4abx + 4ac - 4a^2x^2 - b^2 - 4abx}{(\sqrt{(ax^2 + bx + c)})^2 \times 2\sqrt{(ax^2 + bx + c)}} \right\}$$

$$= \frac{1}{4} \left\{ \frac{4ac - b^2}{(\sqrt{(ax^2 + bx + c)})^{\frac{3}{2}}} \right\}$$

$$y^3 \frac{d^2y}{dx^2} = \frac{1}{4} \left\{ \frac{4ac - b^2}{(\sqrt{(ax^2 + bx + c)})^3} \right\} \times (\sqrt{(ax^2 + bx + c)})^3$$

$$= \frac{4ac - b^2}{4}$$
Hence, y is a constant.

Very short answer

1. Question

$$= \frac{1}{2} \left\{ \frac{4a^2x^2 + 4abx + 4ac - 4a^2x^2 - b^2 - 4abx}{\left(\sqrt{(ax^2 + bx + c)}\right)^2 \times 2\sqrt{(ax^2 + bx + c)}} \right\}$$

$$= \frac{1}{4} \left\{ \frac{4ac - b^2}{\left(\sqrt{(ax^2 + bx + c)}\right)^{\frac{3}{2}}} \right\}$$

$$y^{3} \frac{d^{2}y}{dx^{2}} = \frac{1}{4} \left\{ \frac{4ac - b^{2}}{\left(\sqrt{(ax^{2} + bx + c)}\right)^{3}} \right\} \times \left(\sqrt{(ax^{2} + bx + c)}\right)$$

$$=\frac{4ac-b^2}{4}$$

If $y = a x^{n+1} + bx^{-n}$ and $x^2 \frac{d^2y}{dx^2} = \lambda y$, then write the value of λ .

Answer

$$y=ax^{n+1}+bx^{-n}$$

$$\frac{dy}{dx} = (n+1)ax^n + (-n)bx^{-n-1}$$

$$\frac{d^2y}{dx^2} = n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2}$$

$$x^{2} \frac{d^{2}y}{dx^{2}} = x^{2} \{ n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2} \} = \lambda y$$

$$\lambda y = n(n+1)a x^{n-1+2} + n(n+1)bx^{-n-2+2}$$

$$\lambda y = n(n+1)[a x^{(n+1)} + bx^{(-n)}]$$

$$\lambda y = n(n+1)$$

$$\lambda = n(n+1)$$

If x = a cos nt - b sin nt and $\frac{d^2y}{dt^2} = \lambda_X$, then find the value of λ .

Answer

Given:

y=a cos nt-b sin nt

$$\frac{dy}{dt} = -an \sin nt - bn \cos nt$$

$$\frac{d^2y}{dt^2} = \; -an^2 \cos nt + bn^2 \sin nt = \lambda y$$

$$\lambda y = -n^2$$
 (a cos nt-b sin nt)

$$\lambda y = - n^2 y$$

$$\lambda = -n^2$$

3. Question

If $x = t^2$ and $y = t^3$, where a is a constant, then find $\frac{d^2y}{dx^2}$ at x

Answer

Given:

$$x=t^{2};y=t^{3}$$

$$\frac{dy}{dt} = 3t^2$$
; $\frac{dx}{dt} = 2t$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}} = \frac{3\mathrm{t}}{2}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{3t}{2}}{2t}$$

$$=\frac{3}{4}$$

4. Question

If x = 2at, y = at², where a is a constant, then find $\frac{d^2y}{dx^2}$ at $x = \frac{1}{2}$.

Answer

$$x = 2at, y = at^2$$

$$\frac{dx}{dt} = 2a; \frac{dy}{dt} = 2at$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}}$$

=t

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}}$$

$$=\frac{1}{2a}$$

5. Question

If x = f(t) and y = g(t), then write the value of $\frac{d^2y}{dx^2}$

Answer

Given:

$$x = f(t)$$
 and $y = g(t)$

$$\frac{dx}{dt} = f'(t); \frac{dy}{dt} = g'(t)$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}}$$

$$= \frac{1}{f'(t)} \Big\{ \frac{1}{f'(t)^2} (g''(t)f'(t) - f''(t)g'(t)) \Big\}$$

$$=\frac{(g''(t)f'(t)-f''(t)g'(t))}{(f'(t))^3}$$

6. Question

If y = 1 - x +
$$\frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} \dots to \infty$$
, then write $\frac{d^2y}{dx^2}$ in terms of y.

Answer

$$y = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots \infty$$

$$\frac{dy}{dx} = 0 - 1 + \frac{2x}{2!} - \frac{3x^2}{3!} - \frac{4x^3}{4!} + \dots \infty$$

$$\frac{d^2y}{dx^2} = 0 - 0 + 1 - \frac{2x}{2!} + \frac{3x^2}{3!} - \frac{4x^3}{4!} + \cdots \infty$$

$$=1-\frac{x}{1!}+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots \infty$$

$$\frac{d^2y}{dx^2} = y$$

If
$$y = x + e^x$$
, find $\frac{d^2x}{dy^2}$.

Answer

Given:

$$y = x + e^x$$

$$\frac{d^2x}{d^2y} = \frac{1}{\frac{d^2y}{dx^2}}$$

$$\frac{dy}{dx} = 1 + e^x$$

$$\frac{d^2y}{dx^2} = e^x$$

$$\frac{d^2x}{d^2y} = \frac{1}{e^x}$$

8. Question

$$\frac{dy}{dx} = 1 + e^{x}$$

$$\frac{d^{2}y}{dx^{2}} = e^{x}$$

$$\frac{d^{2}x}{d^{2}y} = \frac{1}{e^{x}}$$

$$= e^{-x}$$
8. Question
If $y = |x - x^{2}|$, then find $\frac{d^{2}y}{dx^{2}}$.

Answer
Given:
$$y = |x - x^{2}|$$

$$y = \begin{cases} x - x^{2}; x \ge 0 \\ x^{2} - x; x \le 0 \end{cases}$$

$$\frac{dy}{dx} = \begin{cases} 1 - 2x; x \ge 0 \\ x \ge 0 \end{cases}$$

Answer

Given:

$$y = |x - x^2|$$

$$y = \begin{cases} x - x^2; x \ge 0 \\ x^2 - x; x \le 0 \end{cases}$$

$$\frac{dy}{dx} = \begin{cases} 1 - 2x; x \ge 0 \\ 2x - 1; x \le 0 \end{cases}$$

$$\frac{d^2y}{dx^2} = \begin{cases} -2; x \ge 0 \\ 2; x \le 0 \end{cases}$$

9. Question

If
$$y = |\log_e x|$$
, find $\frac{d^2y}{dx^2}$.

Answer

$$y = |\log_e x| \ \forall \ x > 0$$

$$y = log_e x$$

$$\frac{dy}{dx} = \frac{1}{x} = x^{-1}$$

$$\frac{d^2y}{dx^2} = (-1)x^{-2}$$