12. Higher Order Derivatives

Exercise 12.1

26. Question

If $y=\tan ^{-1} x$, show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=0$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$Y=\tan ^{-1} X$
Differentiating w.r.t x
$\frac{d y}{d x}=\frac{d\left(\tan ^{-1} x\right)}{d x}$
Using formula(ii)
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+x^{2}}$
$\Rightarrow\left(1+x^{2}\right) \frac{d y}{d x}=1$
Again Differentiating w.r.t x
Using formula(iii)
$\left(1+x^{2}\right) \frac{d y}{d x}+2 x \frac{d y}{d x}=0$
Hence proved.

27. Question

If $y=\left\{\log \left(x+\sqrt{ } x^{2}+1\right)^{2}\right.$, show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=2$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{{d x^{2}}^{2}}=y_{2}$
(ii) $\frac{d(\log x)}{d x}=\frac{1}{x}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=\left[\log \left(x+\sqrt{1+x^{2}}\right)\right\}^{2}$
Differentiating w.r.t x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}\left[\log \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)\right\}^{2}}{\mathrm{dx}}$
Using formula(ii)
$\Rightarrow \frac{d y}{d x}=2 \log \left(x+\sqrt{1+x^{2}}\right) \cdot \frac{1}{\left(x+\sqrt{1+x^{2}}\right)} \cdot\left(1+\frac{2 x}{2 \sqrt{1+x^{2}}}\right)$
Using formula(i)
$\Rightarrow y_{1}=\frac{2 \log \left(x+\sqrt{1+x^{2}}\right)}{x+\sqrt{1+x^{2}}} \cdot \frac{x+\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}$
$\Rightarrow \mathrm{y}_{1}=\frac{2 \log \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)}{\sqrt{1+\mathrm{x}^{2}}}$
Squaring both sides
$\left(y_{1}\right)^{2}=\frac{4}{1+x^{2}}\left[\log \left(x+\sqrt{1+x^{2}}\right)\right.$
Differentiating w.r.t x
$\Rightarrow\left(1+\mathrm{x}^{2}\right) \mathrm{y}_{2} \mathrm{y}_{1}+2 \mathrm{x}\left(\mathrm{y}_{1}\right)^{2}=4 \mathrm{y}_{1}$
Using formual(iii)
$\Rightarrow\left(1+x^{2}\right) y_{2}+\mathrm{xy}_{1}=2$
Hence proved

28. Question

If $y=\left(\tan ^{-1} x\right)^{2}$, then prove that $(1-x 2)^{2} y_{2}+2 x\left(1+x^{2}\right) y_{1}=2$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$

Given: -
$Y=\left(\tan ^{-1} \mathrm{X}\right)^{2}$
Then
$\frac{d y}{d x}=\frac{d\left(\tan ^{-1} x\right)^{2}}{d x}$
Using formula (ii)\&(i)
$y_{1}=2 \tan ^{-1} x \frac{d y}{d x}\left(\tan ^{-1} x\right)$
$\Rightarrow y_{1}=2 \tan ^{-1} \mathrm{x} \cdot \frac{1}{1+\mathrm{x}^{2}}$
Again differentiating with respect to x on both the sides, we obtain
$\left(1+x^{2}\right) y_{2}+2 x y_{1}=2\left(\frac{1}{1+\mathrm{x}^{2}}\right)$ using formula(i)\&(iii)
$\Rightarrow\left(1+x^{2}\right)^{2} y_{2}+2 x\left(1+x^{2}\right) y_{1}=2$
Hence proved.

29. Question

If $y=\cot x$ show that $\frac{d^{2} y}{d x^{2}}+2 y \frac{d y}{d x}=0$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} x$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$Y=\cot x$
Differentiating w.r.t. x
$\frac{d y}{d x}=\frac{d(\cot x)}{d x}$
Using formula (ii)
$\Rightarrow \frac{d y}{d x}=-\operatorname{cosec}^{2} x$
Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=-[2 \operatorname{cosec} x(-\operatorname{cosec} x \cot x)]$
Using formual (iii)
$\Rightarrow \frac{d^{2} y}{d x^{2}}=2 \operatorname{cosec}^{2} x \cot x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=-2 \frac{d y}{d x} \cdot y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}+2 y \frac{d y}{d x}=0$
Hence proved.

30. Question

Find $\frac{d^{2} y}{d x^{2}}$, where $y=\log \left(\frac{x^{2}}{e^{2}}\right)$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d\left(e^{a x}\right)}{d x}=a e^{a x}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$

Given: -
$y=\log \left(\frac{x^{2}}{e^{2}}\right)$
Differentiating w.r.t x
$\frac{d y}{d x}=\frac{1}{\frac{x^{2}}{\mathrm{e}^{2}}} \cdot \frac{1}{\mathrm{e}^{2}} 2 x=\frac{2}{x}$
Again Differentiating w.r.t x
$\frac{d^{2} y}{d^{2}}=2\left(-\frac{1}{x^{2}}\right)=-\frac{2}{x^{2}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{-2}{\mathrm{x}^{2}}$

31. Question

If $y=e^{x}(\sin x+\cos x)$ prove that $\frac{d^{2} y}{d x^{2}}-1 \frac{d y}{d x}+2 y=0$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d\left(e^{a x}\right)}{d x}=a e^{a x}$
(iii) $\frac{d}{d x} x^{n}=\mathrm{nx}^{\mathrm{n}-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=a e^{2 x}+b e^{-2 x}$
Differentiating w.r.t x
$\frac{d y}{d x}=2 a e^{2 x}+b e^{(-x)}(-1)$
$\Rightarrow \frac{d y}{d x}=2 \mathrm{ae}^{2 \mathrm{x}}-\mathrm{be}^{-\mathrm{x}}$
Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=2 \mathrm{ae}^{2 \mathrm{x}}(2)-\mathrm{be}^{-\mathrm{x}}(-1)$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=4 a e^{2 x}+b e^{-x}$
Adding and subtracting be ${ }^{-x}$ on RHS
$\frac{d^{2} y}{d x^{2}}=4 a e^{2 x}+2 b e^{-x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=2\left(a e^{2 x}+b e^{-x}\right)+2 a e^{2 x}-b e^{-x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=2 y+\frac{d y}{d x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0$
32. Question

If $y=e^{x}(\sin x+\cos x)$ Prove that $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d\left(e^{a x}\right)}{d x}=a e^{a x}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=e^{x}(\sin x+\cos x)$
differentiating w.r.t x
$\frac{d y}{d x}=e^{x}(\cos x-\sin x)+(\sin x+\cos x) e^{x}$
$\Rightarrow \frac{d y}{d x}=y+e^{x}(\cos x-\sin x)$

Differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}+e^{x}(-\sin x-\cos x)+(\cos x-\sin x) e^{x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}-y+(\cos x-\sin x) e^{x}$
Adding and subtracting y on RHS
$\frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}-y+(\cos x-\sin x) e^{x}+y-y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$
Hence proved

33. Question

If $y=\cos ^{-1} x$, find $\frac{d^{2} y}{d x^{2}}$ in terms of y alone.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d\left(\cos ^{-1} x\right)}{d x}=\frac{-1}{\sqrt{1+x^{2}}}$
(iii) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: $-\mathrm{y}=\cos ^{-1} \mathrm{x}$
Then,
$\frac{d y}{d x}=\frac{d\left(\cos ^{-1} x\right)}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{-1}{\sqrt{1+x^{2}}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d\left[-\left(\sqrt{1+x^{2}}\right)\right]^{-1}}{d x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-1 \cdot\left(1-x^{2}\right)^{-\frac{3}{2}}}{2} \cdot \frac{d\left(1-x^{2}\right)}{d x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{1}{2 \sqrt{\left(1-x^{2}\right)^{3}}} \cdot(-2 x)$
$\frac{d^{2} y}{d x^{2}}=\frac{-x}{\sqrt{\left(1-x^{2}\right)^{3}}} \ldots \ldots$ (i)
$y=\cos ^{-1} x$
$\Rightarrow \mathrm{x}=\cos \mathrm{y}$
Putting $x=$ cosy in equation(i), we obtain
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-\cos y}{\sqrt{\left(1-\cos ^{2} y\right)^{3}}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-\cos y}{\sqrt{\left(\sin ^{2} y\right)^{3}}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{-\cos y}{\sin ^{3} \mathrm{y}}$
$\Rightarrow \frac{d^{2} y}{d^{2}}=\frac{-\cos y}{\sin y} \cdot \frac{1}{\sin ^{2} y}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=-\cot y \cdot \operatorname{cosec}^{2} y$

34. Question

If $y=e^{a \cos ^{-1} x}$, prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{{d x^{2}}^{2}}=y_{2}$
(ii) $\frac{\mathrm{d}(\log x)}{\mathrm{dx}}=\frac{1}{\mathrm{x}}$
(ii) $\frac{d\left(\cos ^{-1} x\right)}{d x}=\frac{-1}{\sqrt{1+x^{2}}}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(v) \log arithms differentiation $\frac{d y}{d x}=y\left[\frac{v(x)}{u(x)} \cdot u^{\prime}(x)+v^{\prime}(x) \cdot \log [u(x)]\right]$

Given: -
$y=e^{a^{c o s}-1 \mathrm{x}}$
Taking logarithm on both sides we obtain
$\frac{1}{y} \frac{d y}{d x}=a \frac{-1}{\sqrt{1-x^{2}}}$
$\frac{d y}{d x}=\frac{-a y}{\sqrt{1-x^{2}}}$
By squaring both sides, wee obtain
$\left(\frac{d y}{d x}\right)^{2}=\frac{a^{2} y^{2}}{1-x^{2}}$
$\Rightarrow\left(1-x^{2}\right) \cdot\left(\frac{d y}{d x}\right)^{2}=a^{2} y^{2}$
$\Rightarrow\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=a^{2} y^{2}$
Again differentiating both sides with respect to x , we obtain
$\left(\frac{d y}{d x}\right)^{2} \cdot \frac{d\left(1-x^{2}\right)+\left(1-x^{2}\right)}{d x} \cdot \frac{d}{d x}\left[\left(\frac{d y}{d x}\right)^{2}\right]=a^{2} \frac{d\left(y^{2}\right)}{d x}$
$\Rightarrow\left(\frac{d y}{d x}\right)^{2}\left[(-2 x)+\left(1-x^{2}\right)\right] 2 \cdot \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}=a^{2} \cdot 2 y \cdot \frac{d y}{d x}$
$\Rightarrow-x \frac{d y}{d x}+\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=a^{2} y$
$\Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0$
Hence proved

35. Question

If $y=500 e^{7 x}+600 e^{-7 x}$, show that $\frac{d^{2} y}{d x^{2}}=49 y$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{ax}}\right)}{\mathrm{dx}}=\mathrm{ae}^{\mathrm{ax}}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=500 e^{7 x}+600 e^{-7 x}$
$\frac{d y}{d x}=500 . \frac{d\left(e^{7 x}\right)}{d x}+600 . \frac{d\left(e^{-7 x}\right)}{d x}$
$\Rightarrow \frac{d y}{d x}=500 e^{7 x} \cdot \frac{d(7 x)}{d x}+600 \cdot e^{7 x} \cdot \frac{d(-7 x)}{d x}$
$\Rightarrow \frac{d y}{d x}=3500 e^{7 x}-4200 e^{-7 x}$
$\Rightarrow \frac{d y}{d x}=49\left(500 e^{7 x}+600 e^{-7 x}\right)$
$\Rightarrow \frac{d y}{d x}=49 y$
Hence proved.

36. Question

If $x=2 \cos t-\cos 2 t, y=2 \sin t-\sin 2 t$, find $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{2}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$x=2 \cos t-\cos 2 t$
$y=2 \sin t-\sin 2 t$
differentiating w.r.t t
$\frac{d y}{d x}=2(-\sin t)-2(-\sin 2 t)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=2 \cos \mathrm{t}-2 \cos 2 \mathrm{t}$
Dividing both
$\frac{d y}{d x}=\frac{2(\cos \mathrm{t}-\cos 2 \mathrm{t})}{2(\sin 2 \mathrm{t}-\sin \mathrm{t})}$
Differentiating w.r.t t
$\Rightarrow \frac{\mathrm{d} \frac{\mathrm{dy}}{\mathrm{dx}}}{\mathrm{dt}}=\frac{(\sin 2 \mathrm{t}-\sin \mathrm{t})(-\sin \mathrm{t}+2 \sin 2 \mathrm{t})-(\cos \mathrm{t}-\cos 2 \mathrm{t})(2 \cos 2 \mathrm{t}-\cos \mathrm{t})}{(\sin 2 \mathrm{t}-\sin \mathrm{t})^{2}}$
Dividing
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{(\sin 2 \mathrm{t}-\sin \mathrm{t})(2 \sin \mathrm{t}-\sin \mathrm{t})-(\cos \mathrm{t}-\cos 2 \mathrm{t})(2 \cos 2 \mathrm{t}-\cos \mathrm{t})}{2(\sin 2 \mathrm{t}-\sin \mathrm{t})^{3}}$
Putting $\mathrm{t}=\frac{\pi}{2}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{1+2}{-2}=-\frac{3}{2}$
37. Question

If $x=4 z^{2}+5, y=6 z^{2}+7 z+3$, find $\frac{d^{2} y}{d x^{2}}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iii) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(iv) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$x=4 z^{2}+5, y=6 z^{2}+72+3$
Differentiating both w.r.t z
$\frac{\mathrm{dx}}{\mathrm{dz}}=8 \mathrm{z}+0$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dz}}=\frac{12 \mathrm{z}+7}{8 \mathrm{z}}$
and $\Rightarrow \frac{d y}{d z}=12 z+7$
differentiating w.r.t z
$\frac{d\left(\frac{d y}{d x}\right)}{d z}=0+\frac{7}{8}\left(\frac{-1}{z^{2}}\right)$
Dividing
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-7}{8 z^{2} \times 8 z}=\frac{-7}{64 z^{3}}$

38. Question

If $y=\log (1+\cos x)$, prove that $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}} \cdot \frac{d y}{d x}=0$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\text { wou })}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$Y=\log (1+\cos x)$
Differentiating w.r.t x
$\frac{d y}{d x}=\frac{1}{1+\cos x} \cdot(-\sin x)$
$\Rightarrow \frac{d y}{d x}=\frac{-\sin x}{1+\cos x}$
Differentiating w.r.t.x
$\frac{d^{2} y}{{d x^{2}}^{2}}=-\left[\frac{(1+\cos x) \cos x-\sin x(-\sin x)}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d^{2} y}{{d x^{2}}^{2}}=-\left[\frac{(\cos x)+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d^{2} y}{\mathrm{dx}^{2}}=-\left[\frac{1+\cos x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=-\frac{1}{1+\cos \mathrm{x}}$
Differentiating w.r.t x
$\frac{d^{3} y}{d x^{3}}=-\left(\frac{1}{(1+\cos x)^{2}} x-\sin x\right)$
$\Rightarrow \frac{d^{3} y}{d x^{3}}=-\left(\frac{-\sin x}{1+\cos x}\right) \times\left(\frac{-1}{1+\cos x}\right)$
$\Rightarrow \frac{d^{3} y}{d x^{3}}=-\frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}$
$\Rightarrow \frac{d^{3} y}{d x^{3}}+\frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}=0$
39. Question

If $y=\sin (\log x)$, prove that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d(\log x)}{d x}=\frac{1}{x}$
(iii) $\frac{d}{d x} \cos x=\sin x$
(iv) $\frac{d}{d x} \sin x=-\cos x$
(v) $\frac{d}{d x} x^{n}=n x^{n-1}$
(vi) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=\sin (\log x)$
$\frac{d y}{d x}=\cos (\log x) \frac{1}{x}$
$\Rightarrow x \frac{d y}{d x}=\cos (\log x)$
$\Rightarrow x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=-\sin (\log x) \frac{1}{x}$
$\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=-y$
$\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$
Hence proved.

40. Question

If $y=3 e^{2 x}+2 e^{3 x}$, prove that $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{{d x^{2}}^{2}}=y_{2}$
(ii) $\frac{d\left(e^{a x}\right)}{d x}=a e^{a x}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$

Given: -
$y=3 e^{2 x}+2 e^{3 x}$
$\Rightarrow \frac{d y}{d x}=6 e^{2 x}+6 e^{3 x}$
$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=12 \mathrm{e}^{2 \mathrm{x}}+18 \mathrm{e}^{3 \mathrm{x}}$
Hence
$\Rightarrow \frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=6\left(2 e^{2 x}+3 e^{3 x}\right)-30\left(e^{2 x}+e^{3 x}\right)+6\left(3 e^{2 x}+2 e^{3 x}\right)$

$$
=0
$$

41. Question

If $\mathrm{y}=\left(\cot ^{-1} \mathrm{x}\right)^{2}$, prove that $\mathrm{y}_{2}\left(\mathrm{x}^{2}+1\right)^{2}+2 \mathrm{x}\left(\mathrm{x}^{2}+1\right) \mathrm{y}_{1}=2$.

Answer

(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cot ^{-1} x=\frac{-1}{1+x^{2}}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=\left(\cot ^{-1} x\right)^{2}$
differentiating w.r.t x
$\frac{d y}{d x}=y_{1}=2 \cot ^{-1} x \cdot\left[\frac{-1}{1+x^{2}}\right]$
$\Rightarrow \mathrm{y}_{1}=\frac{-2 \cot ^{-1} \mathrm{x}}{1+\mathrm{x}^{2}}$
Differentiating w.r.t x
$\Rightarrow\left(1+x^{2}\right) y_{2}+2 x_{1}=2\left(\frac{1}{1+x^{2}}\right)$
$\Rightarrow\left(1+x^{2}\right)^{2} y_{2}+2 x\left(1+x^{2}\right) y_{1}=2$
Hence proved

42. Question

If $y=\operatorname{cosec}^{-1} x, x>1$, then show that $x\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\left(2 x^{2}-1\right) \frac{d y}{d x}=0$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{{d x^{2}}^{2}}=y_{2}$
(ii) $\frac{d\left(\operatorname{cosec}^{-1} x\right)}{d x}=\frac{-1}{|x| \sqrt{x^{2}-1}}$
(iii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$Y=\operatorname{cosec}^{-1} \mathrm{X}$
We know that
$\frac{d\left(\operatorname{cosec}^{-1} x\right)}{d x}=\frac{-1}{|x| \sqrt{x^{2}-1}}$
Let $\mathrm{y}=\operatorname{cosec}^{-1} \mathrm{x}$
$\frac{d y}{d x}=\frac{-1}{|x| \sqrt{x^{2}-1}}$
Since $x>1,|x|=x$
$\frac{d y}{d x}=\frac{-1}{x \sqrt{x^{2}-1}}$
Differentiating the above function with respect to x
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{x \frac{2 x}{2 \sqrt{x^{2}-1}}+\sqrt{x^{2}-1}}{x^{2}\left(x^{2}-1\right)}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{\frac{x^{2}}{\sqrt{x^{2}-1}}+\sqrt{x^{2}-1}}{x^{2}\left(x^{2}-1\right)}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{x}^{2}+\mathrm{x}^{2}-1}{\mathrm{x}^{2}\left(\mathrm{x}^{2}-1\right)^{\frac{3}{2}}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{2 \mathrm{x}^{2}-1}{\mathrm{x}^{2}\left(\mathrm{x}^{2}-1\right)^{\frac{3}{2}}}$
Thus
$x\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}=\frac{2 x^{2}-1}{x \sqrt{x^{2}-1}} \ldots \ldots$.
Similarly
$\Rightarrow\left[2 x^{2}-1\right] \frac{d y}{d x}=\frac{-2 x^{2}+1}{x \sqrt{x^{2}-1}}$
$\Rightarrow x\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\left[2 x^{2}-1\right] \frac{d y}{d x}=\frac{2 x^{2}-1}{x \sqrt{x^{2}-1}}+\frac{-2 x^{2}+1}{x \sqrt{x^{2}-1}}=0$
Hence proved.

43. Question

If $x=\cos t+\log \tan \frac{t}{2}, y=\sin t$, then find the value of $\frac{d^{2} y}{d t^{2}}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{4}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} \log x=\frac{1}{x}$
(v) $\frac{d}{d x} \tan x=\sec ^{2} x$
(vi) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\text { wou })}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$\mathrm{x}=\cos \mathrm{t}+\log \tan \frac{\mathrm{t}}{2}, \mathrm{y}=\sin \mathrm{t}$
Differentiating with respect to t, we have
$\frac{\mathrm{dx}}{\mathrm{dt}}=-\sin \mathrm{t}+\frac{1}{\tan \frac{\mathrm{t}}{2}} \times \sec ^{2}\left(\frac{\mathrm{t}}{2}\right) \times \frac{1}{2}$
$\Rightarrow \frac{d x}{d t}=-\sin t+\frac{1}{\frac{\sin \left(\frac{t}{2}\right)}{\cos \left(\frac{t}{2}\right)}} \times \frac{1}{\cos ^{2} \frac{t}{2}} \times \frac{1}{2}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-\sin \mathrm{t}+\frac{1}{2 \sin \left(\frac{\mathrm{t}}{2}\right) \cos \left(\frac{\mathrm{t}}{2}\right)}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-\sin \mathrm{t}+\frac{1}{\sin \mathrm{t}}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1-\sin ^{2} \mathrm{t}}{\sin \mathrm{t}}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\cos ^{2} \mathrm{t}}{\sin \mathrm{t}}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=$ cost. $\cot \mathrm{t}$
Now find the value of $\frac{d y}{d t}$
$\frac{d y}{d t}=\cos t$
Now
$\Rightarrow \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$
$\Rightarrow \frac{d y}{d x}=\operatorname{cost} \times \frac{1}{\cos t . \operatorname{cott}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\operatorname{tant}$
We have
$\frac{d y}{d t}=\cos t$
Differentiating with w.r.t t
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=-\sin \mathrm{t}$
At $t=\frac{\pi}{4}$
$\left(\frac{d^{2} y}{d t^{2}}\right)_{t=\frac{\pi}{4}}=-\sin \left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\frac{\mathrm{d}}{\mathrm{dt}}(\tan \mathrm{t})}{\cos \mathrm{t} . \operatorname{cott}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\sec ^{2} \mathrm{t}}{\cos \mathrm{t} . \operatorname{cott}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\sec ^{2} \mathrm{t}}{\cos ^{2} \mathrm{t}} \cdot \sin \mathrm{t}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\sec ^{4} t \times \sin t$
Now putting $\mathrm{t}=\frac{\pi}{4}$
$\left(\frac{d^{2} y}{d x^{2}}\right)_{t=\frac{\pi}{4}}=\sec ^{4} \frac{\pi}{4} \cdot \sin \left(\frac{\pi}{4}\right)=2$

44. Question

If $x=a \sin t$ and $y=a\left(\cos t+\log \tan \frac{t}{2}\right)$, find $\frac{d^{2} y}{d x^{2}}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\text { wou) }}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$x=$ atsint and $y=a\left(\cos t+\log \tan \left(\frac{t}{2}\right)\right)$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{acost}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=-\operatorname{asint}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=-\operatorname{asin} \mathrm{t}+\frac{\mathrm{a}}{\tan \left(\frac{\mathrm{t}}{2}\right)} \times \sec ^{2} \frac{\mathrm{t}}{2} \times \frac{1}{2}$
$\Rightarrow \frac{d y}{d t}=-a \sin t+\frac{a}{2 \sin \left(\frac{\mathrm{t}}{2}\right) \cos \left(\frac{\mathrm{t}}{2}\right)}$
$\Rightarrow \frac{d y}{d t}=-a \sin t+\operatorname{acosec} t$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=-\mathrm{acost}-\mathrm{acosectcott}$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} \frac{d^{2} x}{d t^{2}}}{\left(\frac{d x}{d t}\right)^{3}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\operatorname{acost}(- \text { acost }-\operatorname{acosectcott})-(- \text { asint }+ \text { acosect })(- \text { asint })}{(\text { acost })^{3}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{-\mathrm{a}^{2}\left(\cos ^{2} \mathrm{t}+\sin ^{2} \mathrm{t}\right)-\mathrm{a}^{2} \cot ^{2} \mathrm{t}+\mathrm{a}^{2}}{\mathrm{a}^{3} \cos ^{3} \mathrm{t}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{1}{\mathrm{a} \sin ^{2} \mathrm{t} \cos \mathrm{t}}$

45. Question

If $x=a(\cos t+t \sin t)$ and $y=a(\sin t-t \cos t)$, then find the value of $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{4}$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$\mathrm{x}=\mathrm{a}(\cos \mathrm{t}+\mathrm{t} \sin \mathrm{t})$ and $\mathrm{y}=\mathrm{a}(\sin \mathrm{t}-\mathrm{t} \cos \mathrm{t})$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{a} \operatorname{cost}-\mathrm{acost}+\mathrm{atsint}=$ atsint
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=$ atcost + asint
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-\mathrm{asin} \mathrm{t}+\mathrm{atcos} \mathrm{t}+\mathrm{a} \sin \mathrm{t}=\mathrm{atcos} \mathrm{t}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\mathrm{atsin} \mathrm{t}+\mathrm{acost}$
$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{\frac{\mathrm{dx}}{\mathrm{dt}} \frac{\mathrm{d}^{2} y}{d t^{2}}-\frac{\mathrm{dy}}{\mathrm{dt}} \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}}}{} \frac{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)^{3}}{}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\text { atcost(atcost }+\mathrm{asint})-(- \text { atsint }+ \text { acost })(\text { atsint })}{(\operatorname{acost})^{3}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{1}{(\text { atcost })^{3}}$
Putting $\mathrm{t}=\frac{\pi}{4}$
$\left(\frac{\mathrm{d}^{2} y}{d x^{2}}\right)_{t=\frac{\pi}{4}}=\frac{1}{a \cos ^{3} \frac{\pi}{4} \cdot a \frac{\pi}{4}}=\frac{8 \sqrt{2}}{\pi a}$
46. Question

If $\mathrm{x}=\mathrm{a}\left(\cos \mathrm{t}+\log \tan \frac{\mathrm{t}}{2}\right), \mathrm{y}=\mathrm{a} \sin \mathrm{t}$, evaluate $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$ at $\mathrm{t}=\frac{\pi}{3}$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$\mathrm{x}=\mathrm{a}\left(\cos \mathrm{t}+\log \tan \frac{\mathrm{t}}{2}\right), \mathrm{y}=\operatorname{sint}$
Differentiating with respect to t, we have
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-\mathrm{a} \operatorname{sint}+\mathrm{a} \frac{1}{\tan \frac{\mathrm{t}}{2}} \times \sec ^{2}\left(\frac{\mathrm{t}}{2}\right) \times \frac{1}{2}$
$\Rightarrow \frac{d x}{d t}=-a \sin t+a \frac{1}{\frac{\sin \left(\frac{t}{2}\right)}{\cos \left(\frac{t}{2}\right)}} \times \frac{1}{\cos ^{2} \frac{t}{2}} \times \frac{1}{2}$
$\Rightarrow \frac{d x}{d t}=-a \sin t+a \frac{1}{2 \sin \left(\frac{t}{2}\right) \cos \left(\frac{t}{2}\right)}$
$\Rightarrow \frac{d x}{d t}=-a \sin t+a \frac{1}{\sin t}=-a \sin t+a \operatorname{cosec} t$
Now find the value of $\frac{d y}{d t}$
$\frac{d y}{d t}=a \cos t$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=-\operatorname{asin} \mathrm{t}$

$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{-\mathrm{asint}(-\mathrm{asin} t+\text { acosect })-(-\operatorname{acost}-\operatorname{acosectcott})(-\mathrm{acost})}{(\text { acosect }-a \sin t)^{3}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{a}^{2}\left(\cos ^{2} \mathrm{t}+\sin ^{2} \mathrm{t}\right)+\mathrm{a}^{2} \cot ^{2} \mathrm{t}-\mathrm{a}^{2}}{(\mathrm{a} \operatorname{cosec} \mathrm{t}-\mathrm{a} \sin \mathrm{t})^{3}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{\sin t}{a \cos ^{4} t}$
$\left(\frac{d^{2} y}{d x^{2}}\right)_{t=\frac{\pi}{3}}=\frac{\sin \frac{\pi}{3}}{\operatorname{acos}^{4} \frac{\pi}{3}}=\frac{8 \sqrt{3}}{a}$

47. Question

If $x=a(\cos 2 t+2 t \sin 2 t)$ and $y=a(\sin 2 t-2 t \cos 2 t)$, then find $\frac{d^{2} y}{d x^{2}}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$\mathrm{x}=\mathrm{a}(\cos 2 \mathrm{t}+2 \mathrm{t} \sin 2 \mathrm{t})$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-2 \mathrm{a} \sin 2 \mathrm{t}+2 \mathrm{a} \sin 2 \mathrm{t}+4 \mathrm{atco} 2 \mathrm{t}=4 \mathrm{atcos} 2 \mathrm{t}$
and $\mathrm{y}=\mathrm{a}(\sin 2 \mathrm{t}-2 \mathrm{t} \cos 2 \mathrm{t})$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{a} \cos 2 \mathrm{t}-2 \mathrm{a} \cos 2 \mathrm{t}+4 \mathrm{at} \sin 2 \mathrm{t}=4 \mathrm{at} \sin 2 \mathrm{t}$
$\Rightarrow \frac{d y}{d x}=\frac{d t}{d x} \times \frac{d y}{d t}=\frac{\sin 2 t}{\cos 2 t}=\tan 2 t$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}(\tan 2 \mathrm{t})}{\mathrm{dx}}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\sec ^{2} 2 t \frac{d(2 t)}{d x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=2 \sec ^{2} 2 t \frac{d(t)}{d x}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\sec ^{3} 2 \mathrm{t}}{2 \mathrm{a}}$

48. Question

If $x=3 \cot t-2 \cos ^{3} t, y=3 \sin t-2 \sin ^{3} t$, find $\frac{d^{2} y}{d x^{2}}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} x$
(v) $\frac{d}{d x} x^{n}=n x^{n-1}$
(vi) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vii) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
given: -
$\mathrm{x}=3 \cot \mathrm{t}-2 \cos ^{3} \mathrm{t}, \mathrm{y}=3 \sin \mathrm{t}-2 \sin ^{3} \mathrm{t}$
differentiating both w.r.t t
$\frac{d x}{d t}=-3 \sin t-6 \cos ^{2} t(-\sin t)$
$\frac{d x}{d t}=-3 \sin t+6 \cos ^{2} \operatorname{tsin} t$
And $\mathrm{y}=3 \sin \mathrm{t}-2 \sin ^{3} \mathrm{t}$
differentiating both w.r.t t
$\frac{d y}{d t}=3 \cos t-6 \sin ^{2} t \cos t$
Now,
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
$\Rightarrow \frac{d y}{d x}=\frac{\cos t-2 \sin ^{2} t \cos t}{-\sin t+2 \cos ^{2} t \sin t}$
$\Rightarrow \frac{d y}{d x}=\frac{\cos t\left[1-2 \sin ^{2} t\right]}{\operatorname{sint}\left[2 \cos ^{2} t-1\right]}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\cot \mathrm{t}$
differentiating both w.r.t x
$\frac{d^{2} y}{d x^{2}}=\frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} x$

49. Question

If $x=a \sin t-b \cos t, y=a \cos t+b \sin t$, prove that $\frac{d^{2} y}{d x^{2}}=-\frac{x^{2}+y^{2}}{y^{3}}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d}{d x} x^{n}=n x^{n-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$\mathrm{x}=\mathrm{asint}-\mathrm{bcost}, \mathrm{y}=\mathrm{accost}+\mathrm{bsint}$
differentiating both w.r.t t
$\frac{d x}{d t}=a \cos t+b \sin t, \frac{d y}{d t}=-a \sin t+b \cos t$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{y}, \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{x}$
Dividing both
$\Rightarrow \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=-\frac{x}{y}$
Differentiating w.r.t t
$\Rightarrow \frac{d\left(\frac{d y}{d x}\right)}{d t}=-\frac{y\left(\frac{d x}{d t}\right)-x\left(\frac{d y}{d t}\right)}{y^{2}}$
Putting the value
$\Rightarrow \frac{d\left(\frac{d y}{d x}\right)}{d t}=-\frac{\left\{y^{2}+x^{2}\right\}}{y^{2}}$
Dividing them
$\Rightarrow \frac{d^{2} y}{d x^{2}}=-\frac{\left\{y^{2}+x^{2}\right\}}{y^{2} \cdot y}=-\frac{\left\{x^{2}+y^{2}\right\}}{y^{3}}$
Hence proved.

50. Question

Find A and B so that $y=A \sin 3 x+B \cos 3 x$ satisfies the equation $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=10 \cos 3 x$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=A \sin 3 x+B \cos 3 x$
differentiating w.r.t x
$\frac{d y}{d x}=3 \operatorname{Axos} 3 x+3 B(-\sin 3 x)$
Again differentiating w.r.t x
$\frac{d^{2} y}{d x^{2}}=3 A(-\sin 3 x) \cdot 3-3 B(\cos 3 x) \cdot 3$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=-9(A \sin 3 x+B \cos 3 x)=-9 y$
Now adding
$\frac{d^{2} y}{d^{2}}+\frac{4 d y}{d x}+3 y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{4 d y}{d x}+3 y=-9 y+4(3 A \cos 3 x-3 B \sin 3 x)+3 y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{4 d y}{d x}+3 y=12(A \cos 3 x-b \sin 3 x)-6(A \sin 3 x+B \cos 3 x)$
$\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{4 d y}{d x}+3 y=(12 A-6 B) \cos 3 x-(12 B+6 A) \sin 3 x$
But given,
$\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}+\frac{4 \mathrm{dy}}{\mathrm{dx}}+3 \mathrm{y}=10 \cos 3 \mathrm{x}$
$\Rightarrow 12 \mathrm{~A}-6 \mathrm{~B}=10$
$\Rightarrow-(12 B+6 A)=0$
$\Rightarrow 6 \mathrm{~A}=-12 \mathrm{~B}$
$\Rightarrow A=-2 B$
Puttuing A
$\Rightarrow 12(-2 B)-63=10$
$\Rightarrow-24 \mathrm{~B}-6 \mathrm{~B}=10$
$\Rightarrow \mathrm{B}=-\frac{1}{3}$
$A=-2 \times-\frac{1}{3}=\frac{2}{3}$
And $A=\frac{2}{3}, B=-\frac{1}{3}$
51. Question

If $y=A e^{-k t} \cos (p t+c)$, prove that $\frac{d^{2} y}{d t^{2}}+2 k \frac{d y}{d t}+n^{2} y=0$, where $n^{2}=p^{2}+k^{2}$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} e^{a x}=a e^{a x}$
(iii) $\frac{d}{d x} \cos x=\sin x$
(iv) $\frac{d}{d x} \sin x=-\cos x$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Given: -
$\mathrm{y}=\mathrm{A} \mathrm{e}^{-\mathrm{kt}} \cos (\mathrm{pt}+\mathrm{c})$
Differentiating w.r.t t
$\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{A}\left(\mathrm{e}^{-\mathrm{kt}}(-\sin (\mathrm{pt}+\mathrm{c}) \cdot \mathrm{p})+(\cos (\mathrm{pt}+\mathrm{c}))\left(-\mathrm{re}^{-\mathrm{kt}}\right)\right)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{Ape}^{-\mathrm{kt}}(\mathrm{pt}+\mathrm{c})-\mathrm{kAe}^{-k t} \cos (\mathrm{pt}+\mathrm{c})$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{Ape}^{-\mathrm{kt}} \sin (\mathrm{pt}+\mathrm{c})-\mathrm{ky}$
Differentiating w.r.t t
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=A p k e^{-k t} \sin (p t+c)-\mathrm{p}^{2} \mathrm{y}-2 \mathrm{ky}_{1}+\mathrm{ky}_{1}$
$\Rightarrow \frac{d^{2} y}{d t^{2}}=A p k e^{-k t} \sin (p t+c)-p^{2} y-2 \mathrm{ky}_{1}-\mathrm{kApe}^{-k t} \sin (p t+c)-\mathrm{k}^{2} y$
$\Rightarrow \frac{d^{2} y}{d t^{2}}=-\left(p^{2}+k^{2}\right) y-2 k \frac{d y}{d x}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt} \mathrm{t}^{2}}+2 \mathrm{~d} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{n}^{2} \mathrm{y}=0$
Hence proved

52. Question

If $y=x^{n}\{a \cos (\log x)+b \sin (\log x)\}$, prove that $x^{2} \frac{d^{2} y}{d x^{2}}+(1-2 n) \frac{d y}{d x}+\left(1+n^{2}\right) y=0$

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} \cos x=\sin x$
(iii) $\frac{d}{d x} \sin x=-\cos x$
(iv) $\frac{d(\log x)}{d x}=\frac{1}{x}$
(v) $\frac{d}{d x} x^{n}=n x^{n-1}$
(vi) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=x^{n}(\operatorname{acos}(\log x)+b \sin (\log x))$
$\Rightarrow y=a x^{n} \cos (\log x)+b x^{n} \sin (\log x)$
$\frac{d y}{d x}=a n x^{n-1} \cos (\log x)-a x^{n-1} \sin (\log x)+b x^{n-1} \sin \log x+b x^{n-1} \cos \log x$
$\Rightarrow \frac{d y}{d x}=x^{n-1} \cos \log x(n a+b)+x^{n-1} \sin (\log x)(b n-a)$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(x^{n-1} \cos (\log x)(n a+b)+x^{n-1} \sin (\log x)(b n-a)\right)$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=(n a+b)\left[(n-1) x^{n-2} \cos (\log x)-x^{n-2} \sin (\log x)\right]$ $+(b n-a)\left[(n-1) x^{n-2} \sin (\log x)+x^{n-2} \cos (\log x)\right]$
$x^{2} \frac{d^{2} y}{d x^{2}}+(1-2 n) \frac{d y}{d x}+\left(1+n^{2}\right) y$
$=x^{n}(n a+b)[(n-1) \cos (\log x)-\sin (\log x)]+(b n-a) x^{n}[(n-1) \sin (\log x)+\cos (\log x)]+(1-2 n) x^{n-}$
${ }^{1} \cos (\log x)(n a+b)+(1-2 n) x^{n-1} \sin (\log x)(b n-a)+a\left(1+n^{2}\right) x^{n} \cos (\log x)+b x^{n}\left(1+n^{2}\right) \sin (\log x)$
$\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}+(1-2 n) \frac{d y}{d x}+\left(1+n^{2}\right) y=0$

53. Question

If $y=a\left\{x+\sqrt{ } x^{2}+1\right\}^{n}+b\left\{x-\sqrt{ } x^{2}+1\right\}^{-n}$, prove that $\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-n^{2}=0$.

Answer

Formula: -
(i) $\frac{d y}{d x}=y_{1}$ and $\frac{d^{2} y}{d x^{2}}=y_{2}$
(ii) $\frac{d}{d x} x^{n}=n x^{n-1}$
(iii) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{wou})}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

Given: -
$y=a\left\{x+\sqrt{x^{2}}+1\right\}^{n}+b\left\{x-\sqrt{x^{2}}+1\right\}^{-n}$
$\frac{d y}{d x}=n a\left\{x+x^{2}+1\right\}^{n-1}\left[1+x\left(x^{2}+1\right)^{-\frac{1}{2}}\right]$
$-n b\left\{x-\sqrt{x^{2}+1}\right\}^{-n-1}\left[1-x\left(x^{2}+1\right)^{-\frac{1}{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{n a\left\{x+x^{2}+1\right\}^{n}}{\sqrt{x^{2}+1}}+\frac{n b\left\{x+x^{2}+1\right\}^{-n}}{\sqrt{x^{2}+1}}$
$\Rightarrow \frac{x d y}{d x}=\frac{n x}{\sqrt{x^{2}+1}} y$
$\Rightarrow \frac{d^{2} y}{{d x^{2}}^{2}}=\frac{n x}{\sqrt{x^{2}+1}} \frac{d y}{d x}+y\left[\frac{\sqrt{x^{2}+1}-x^{2}\left(x^{2}+1\right)^{-\frac{1}{2}}}{x^{2}+1}\right]$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{n^{2} x^{2}}{x^{2}+1}+y\left[\frac{1}{\left(x^{2}+1\right) \sqrt{x^{2}+1}}\right]$
$\Rightarrow\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}=\frac{n^{2} x^{4}\left(\sqrt{x^{2}+1}\right)+x^{2} y}{x^{2}+1 \sqrt{x^{2}+1}}-\frac{n^{2} x^{2}\left(\sqrt{x^{2}+1}\right)+y}{x^{2}+1\left(\sqrt{x^{2}+1}\right)}$
Now

$$
\begin{aligned}
\Rightarrow\left(x^{2}-1\right) & \frac{d^{2} y}{d x^{2}}+\frac{x d y}{d x}-n y \\
& =\frac{n^{2} x^{4}\left(\sqrt{x^{2}+1}\right)+x^{2} y}{\left(x^{2}+1\right) \sqrt{x^{2}+1}}-\frac{n^{2} x^{2}\left(\sqrt{x^{2}+1}\right)+y}{\left(x^{2}+1\right)\left(\sqrt{x^{2}+1}\right)}-n y=0
\end{aligned}
$$

1 A. Question

Find the second order derivatives of each of the following functions:
$x^{3}+\tan x$

Answer

Basic idea:

$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
\checkmark Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $\mathrm{y}=\mathrm{x}^{3}+\tan \mathrm{x}$

We have to find $\frac{\mathrm{d}^{2} y}{d x^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $\frac{d y}{d x}$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3}+\tan \mathrm{x}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3}\right)+\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})$
$\left[\because \frac{d}{d x}(\tan x)=\sec ^{2} x \& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
$=3 x^{2}+\sec ^{2} x$
$\therefore \frac{d y}{d x}=3 x^{2}+\sec ^{2} x$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(3 x^{2}+\sec ^{2} x\right)=\frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}\left(\sec ^{2} x\right)$
$\frac{d^{2} y}{d x^{2}}=6 x+2 \sec x \sec x \tan x$
[differentiated $\sec ^{2} x$ using chain rule, let $t=\sec x$ and $z=t \therefore \frac{d z}{d x}=\frac{d z}{d t} \times \frac{d t}{d x}$]
$\frac{d^{2} y}{d x^{2}}=6 x+2 \sec ^{2} x \tan x$

1 B. Question

Find the second order derivatives of each of the following functions:
$\sin (\log x)$

Answer

$\sqrt{ }$ Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=\sin (\log x)$
We have to find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\sin (\log \mathrm{x}))$
differentiating $\sin (\log x)$ using the chain rule,
let, $t=\log x$ and $y=\sin t$
$\because \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$ [using chain rule]
$\frac{d y}{d x}=\cos t \times \frac{1}{x}$
$\frac{d y}{d x}=\cos (\log x) \times \frac{1}{x}\left[\because \frac{d}{d x}(\log x)=\frac{1}{x} \& \frac{d}{d x}(\sin x)=\cos x\right]$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\cos (\log x) \times \frac{1}{x}\right)$
$\frac{d^{2} y}{d^{2}}=\cos (\log x) \times \frac{-1}{x^{2}}+\frac{1}{x} \times \frac{1}{x}(-\sin (\log x))$
[using product rule of differentiation]
$=\frac{-1}{x^{2}} \cos (\log x)-\frac{1}{x^{2}} \sin (\log x)$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{-1}{\mathrm{x}^{2}} \cos (\log \mathrm{x})-\frac{1}{\mathrm{x}^{2}} \sin (\log \mathrm{x})$

1 C. Question

Find the second order derivatives of each of the following functions:
$\log (\sin x)$

Answer

$\sqrt{ }$ Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
\checkmark Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $\mathrm{y}=\log (\sin \mathrm{x})$
We have to find $\frac{d^{2} y}{{d x^{2}}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $\mathrm{dy} / \mathrm{dx}$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\log (\sin \mathrm{x}))$
differentiating $\sin (\log x)$ using cthe hain rule,
let, $\mathrm{t}=\sin \mathrm{x}$ and $\mathrm{y}=\log \mathrm{t}$
$\because \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$ [using chain rule]
$\frac{d y}{d x}=\cos x \times \frac{1}{t}$
$\left[\because \frac{d}{d x} \log x=\frac{1}{x} \& \frac{d}{d x}(\sin x)=\cos x\right]$
$\frac{d y}{d x}=\frac{\cos x}{\sin x}=\cot x$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\cot x)$
$\frac{d^{2} y}{d x^{2}}=-\operatorname{cosec}^{2} x\left[\because \frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x\right]$
$\frac{d^{2} y}{d^{2}}=-\operatorname{cosec}^{2} x$

1 D. Question

Find the second order derivatives of each of the following functions:
$e^{x} \sin 5 x$

Answer

$\sqrt{ }$ Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \sin 5 \mathrm{x}$
We have to find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}} \sin 5 \mathrm{x}\right)$
Let $u=e^{x}$ and $v=\sin 5 x$
As, $y=u v$
\therefore Using product rule of differentiation:
$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\therefore \frac{d y}{d x}=e^{x} \frac{d}{d x}(\sin 5 x)+\sin 5 x \frac{d}{d x} e^{x}$
$\frac{d y}{d x}=5 e^{x} \cos 5 x+e^{x} \sin 5 x$
$\left[\because \frac{d}{d x}(\sin a x)=a \cos a x\right.$, where a is any constant $\left.\& \frac{d}{d x} e^{x}=e^{x}\right]$
Again differentiating w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(5 e^{x} \cos 5 x+e^{x} \sin 5 x\right)$
$=\frac{d}{d x}\left(5 e^{x} \cos 5 x\right)+\frac{d}{d x}\left(e^{x} \sin 5 x\right)$
Again using the product rule :
$\frac{d^{2} y}{d x^{2}}=e^{x} \frac{d}{d x}(\sin 5 x)+\sin 5 x \frac{d}{d x} e^{x}+5 e^{x} \frac{d}{d x}(\cos 5 x)+\cos 5 x \frac{d}{d x}\left(5 e^{x}\right)$
$\frac{d^{2} y}{d x^{2}}=5 e^{x} \cos 5 x-25 e^{x} \sin 5 x+e^{x} \sin 5 x+5 e^{x} \cos 5 x\left[\because \frac{d}{d x}(\cos a x)=-a \sin a x, a\right.$ is any constant $]$
$\frac{d^{2} y}{d x^{2}}=10 e^{x} \cos 5 x-24 e^{x} \sin 5 x$

1 E. Question

Find the second order derivatives of each of the following functions:
$e^{6 x} \cos 3 x$

Answer

$\sqrt{ }$ Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=e^{6 x} \cos 3 x$
We have to find $\frac{d^{2} y}{{d x^{2}}^{2}}$
As, $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{d y}{d x}=\frac{d}{d x}\left(e^{6 x} \cos 3 \mathrm{x}\right)$
Let $u=e^{6 x}$ and $v=\cos 3 x$
As, $y=u v$
\therefore Using product rule of differentiation:
$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\therefore \frac{d y}{d x}=e^{6 x} \frac{d}{d x}(\cos 3 x)+\cos 3 x \frac{d}{d x} e^{6 x}$
$\frac{d y}{d x}=-3 e^{6 x} \sin 3 x+6 e^{6 x} \cos 3 x\left[\because \frac{d}{d x}(\cos a x)=-a \sin a x, a\right.$ is any constant $\left.\& \frac{d}{d x} e^{a x}=a e^{x}\right]$
Again differentiating w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(-3 e^{6 x} \sin 3 x+6 e^{6 x} \cos 3 x\right)$
$=\frac{d}{d x}\left(-3 e^{6 x} \sin 3 x\right)+\frac{d}{d x}\left(6 e^{6 x} \cos 3 x\right)$
Again using the product rule :
$\frac{d^{2} y}{d x^{2}}=-3 e^{6 x} \frac{d}{d x}(\sin 3 x)-3 \sin 3 x \frac{d}{d x} e^{6 x}+6 e^{6 x} \frac{d}{d x}(\cos 3 x)+\cos 3 x \frac{d}{d x}\left(6 e^{6 x}\right)$
$\frac{d^{2} y}{d x^{2}}=-9 e^{6 x} \cos 3 x-18 e^{6 x} \sin 3 x-18 e^{6 x} \sin 3 x+36 e^{6 x} \cos 3 x$
$\frac{d^{2} y}{d x^{2}}=27 e^{6 x} \cos 3 x-36 e^{6 x} \sin 3 x$

1 F. Question

Find the second order derivatives of each of the following functions:
$x^{3} \log x$

Answer

$\sqrt{ }$ Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=x^{3} \log x$
We have to find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
As $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{d y}{d x}=\frac{d}{d x}\left(x^{3} \log \mathrm{x}\right)$
Let $u=x^{3}$ and $v=\log x$

As, $y=u v$
\therefore Using product rule of differentiation:
$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\therefore \frac{d y}{d x}=x^{3} \frac{d}{d x}(\log x)+\log x \frac{d}{d x} x^{3}$
$\frac{d y}{d x}=3 x^{2} \log x+\frac{x^{3}}{x}$
$\left[\because \frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}\right.$ and $\left.\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}\right]$
Again differentiating w.r.t x:
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(3 x^{2} \log x+x^{2}\right)$
$=\frac{d}{d x}\left(3 x^{2} \log x\right)+\frac{d}{d x}\left(x^{2}\right)$
Again using the product rule :
$\frac{d^{2} y}{d x^{2}}=3 \log x \frac{d}{d x} x^{2}+3 x^{2} \frac{d}{d x} \log x+\frac{d}{d x} x^{2}$
$\left[\because \frac{d}{d x}(\log x)=\frac{1}{x}\right.$ and $\left.\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
$\frac{d^{2} y}{d x^{2}}=6 x \log x+\frac{3 x^{2}}{x}+2 x$
$\frac{d^{2} y}{d x^{2}}=6 x \log x+5 x$

1 G. Question

Find the second order derivatives of each of the following functions:
$\tan ^{-1} \mathrm{x}$

Answer

Basic idea:
$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=\tan ^{-1} x$
We have to find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$

As $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)\left[\because \frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}\right]$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}\left[\because \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}\right]$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)$
Differentiating $\frac{1}{1+\mathrm{x}^{2}}$ using chain rule,
let $t=1+x^{2}$ and $z=1 / t$
$\because \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{\mathrm{dz}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$ [from chain rule of differentiation]
$\therefore \frac{\mathrm{dz}}{\mathrm{dx}}=\frac{-1}{\mathrm{t}^{2}} \times 2 \mathrm{x}=-\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\left[\because \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}\right]$
$\therefore \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\frac{2 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}$

1 H. Question

Find the second order derivatives of each of the following functions:
$x \cos x$

Answer

$\sqrt{ }$ Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: Iff is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d y}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=x \cos x$
We have to find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x} \cos \mathrm{x})$
Let $u=x$ and $v=\cos x$
As, $y=u v$
\therefore Using product rule of differentiation:
$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\therefore \frac{d y}{d x}=x \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x} x$
$\frac{d y}{d x}=-x \sin x+\cos x$
$\left[\because \frac{d}{d x}(\cos x)=-\sin x\right.$ and $\left.\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
Again differentiating w.r.t x:
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(-x \sin x+\cos x)$
$=\frac{d}{d x}(-x \sin x)+\frac{d}{d x} \cos x$
Again using the product rule :
$\frac{d^{2} y}{d^{2}}=-x \frac{d}{d x} \sin x+\sin x \frac{d}{d x}(-x)+\frac{d}{d x} \cos x$
$\left[\because \frac{d}{d x}(\sin x)=\cos x\right.$ and $\left.\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
$\frac{d^{2} y}{d x^{2}}=-x \cos x-\sin x-\sin x$
$\frac{d^{2} y}{d x^{2}}=-x \cos x-2 \sin x$

1 I. Question

Find the second order derivatives of each of the following functions:
$\log (\log x)$

Answer

$\sqrt{ }$ Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$
\checkmark Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=\log (\log x)$
We have to find $\frac{d^{2} y}{{d x^{2}}^{2}}$
As, $\frac{\mathrm{d}^{2} y}{d x^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $\mathrm{dy} / \mathrm{dx}$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\log \log \mathrm{x})$
Let $y=\log t$ and $t=\log x$
Using chain rule of differentiation:
$\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$
$\therefore \frac{d y}{d x}=\frac{1}{t} \times \frac{1}{x}=\frac{1}{x \log x}\left[\because \frac{d}{d x}(\log x)=\frac{1}{x}\right]$
Again differentiating w.r.t x :
As, $\frac{d y}{d x}=u \times v$
Where $\mathrm{u}=\frac{1}{\mathrm{x}}$ and $\mathrm{v}=\frac{1}{\log \mathrm{x}}$
\therefore using product rule of differentiation:
$\frac{d^{2} y}{d x^{2}}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{1}{x} \frac{d}{d x}\left(\frac{1}{\log x}\right)+\frac{1}{\log x} \frac{d}{d x}\left(\frac{1}{x}\right)\left[\right.$ use chain rule to find $\frac{d}{d x}\left(\frac{1}{\log x}\right)$]
$\frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}(\log x)^{2}}-\frac{1}{x^{2} \log x}\left[\because \frac{d}{d x}(\log x)=\frac{1}{x}\right.$ and $\left.\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
$\therefore \frac{d^{2} y}{{d x^{2}}^{2}}=-\frac{1}{x^{2}(\log x)^{2}}-\frac{1}{x^{2} \log x}$

2. Question

If $y=e^{-x} \cos x$, show that $: \frac{d^{2} y}{d x^{2}}=2 e^{-x} \sin x$.

Answer

Basic idea:

$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given,
$y=e^{-x} \cos x$
TO prove :
$\frac{d^{2} y}{d x^{2}}=2 e^{-x} \sin x$.
Clearly from the expression to be proved we can easily observe that we need to just find the second derivative of given function.

Given, $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}$
We have to find $\frac{d^{2} y}{{d x^{2}}^{2}}$
As, $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So lets first find $\mathrm{dy} / \mathrm{dx}$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{-\mathrm{x}} \cos \mathrm{x}\right)$
Let $u=e^{-x}$ and $v=\cos x$
As, $y=u^{*} v$
\therefore using product rule of differentiation:
$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\therefore \frac{d y}{d x}=e^{-x} \frac{d}{d x}(\cos x)+\cos x \frac{d y}{d x} e^{-x}$
$\frac{d y}{d x}=-e^{-x} \sin x-e^{-x} \cos x$
$\left[\because \frac{d}{d x}(\cos \mathrm{x})=-\sin \mathrm{x} \& \frac{\mathrm{~d}}{\mathrm{dx}} \mathrm{e}^{-\mathrm{x}}=-\mathrm{e}^{-\mathrm{x}}\right]$
Again differentiating w.r.t x:
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(-e^{-x} \sin x-e^{-x} \cos x\right)$
$=\frac{d}{d x}\left(-e^{-x} \sin x\right)-\frac{d}{d x}\left(e^{-x} \cos x\right)$
Again using the product rule :
$\frac{d^{2} y}{d x^{2}}=-e^{-x} \frac{d}{d x}(\sin x)-\sin x \frac{d}{d x} e^{-x}-e^{-x} \frac{d}{d x}(\cos x)-\cos x \frac{d}{d x}\left(e^{-x}\right)$
$\frac{d^{2} y}{d x^{2}}=-e^{-x} \cos x+e^{-x} \sin x+e^{-x} \sin x+e^{-x} \cos x$
$\left[\because \frac{d}{d x}(\cos x)=-\sin x, \frac{d}{d x} e^{-x}=-e^{-x}\right]$
$\frac{d^{2} y}{{d x^{2}}^{2}}=2 e^{-x} \sin x \ldots$. proved

3. Question

If $y=x+\tan x$, show that: $\cos ^{2} x \frac{d^{2} y}{d x^{2}}-2 y-2 x=0$

Answer

Basic idea:
\checkmark Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
\checkmark The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
\checkmark Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $\mathrm{y}=\mathrm{x}+\tan \mathrm{x}$ \qquad equation 1

As we have to prove: $\cos ^{2} x \frac{d^{2} y}{{d x^{2}}^{2}}-2 y+2 x=0$
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $\mathrm{dy} / \mathrm{dx}$ and differentiate it again.
$\therefore \frac{d y}{d x}=\frac{d}{d x}(x+\tan x)=\frac{d}{d x}(x)+\frac{d}{d x}(\tan x)\left[\because \frac{d}{d x}(\tan x)=\sec ^{2} x \& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
$=1+\sec ^{2} \mathrm{x}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=1+\sec ^{2} \mathrm{x}$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(1+\sec ^{2} x\right)=\frac{d}{d x}(1)+\frac{d}{d x}\left(\sec ^{2} x\right)$
$\frac{d^{2} y}{d^{2}}=0+2 \sec x \sec x \tan x$
[differentiated $\sec ^{2} x$ using chain rule, let $t=\sec x$ and $z=Z \therefore \frac{d z}{d x}=\frac{d z}{d t} \times \frac{d t}{d x}$]
$\frac{d^{2} y}{d^{2}}=2 \sec ^{2} x \tan x$ \qquad equation 2

As we got an expression for the second order, as we need $\cos ^{2} x$ term with $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
Multiply both sides of equation 1 with $\cos ^{2} \mathrm{x}$:
\therefore we have,
$\cos ^{2} \mathrm{x} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=2 \cos ^{2} \mathrm{x} \sec ^{2} \mathrm{x} \tan \mathrm{x}[\because \cos \mathrm{x} \times \sec \mathrm{x}=1]$
$\cos ^{2} x \frac{d^{2} y}{d x^{2}}=2 \tan x$
From equation 1:
$\tan x=y-x \cdot \cos ^{2} x \frac{d^{2} y}{d x^{2}}=2(y-x)$
$\therefore \cos ^{2} x \frac{d^{2} y}{d x^{2}}-2 y+2 x=0 \ldots$ proved

4. Question

If $y=x^{3} \log x$, prove that $\frac{d^{4} y}{d x^{4}}=\frac{6}{x}$.

Answer

Basic idea:

$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
\checkmark The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
\checkmark Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
As we have to prove : $\frac{\mathrm{d}^{4} \mathrm{y}}{\mathrm{dx}^{4}}=\frac{6}{\mathrm{x}}$
We notice a third order derivative in the expression to be proved so first take the step to find the third order derivative.

Given, $y=x^{3} \log x$
Let's find $-\frac{d^{4} y}{d x^{4}}$
As $\frac{d^{4} y}{d x^{4}}=\frac{d}{d x}\left(\frac{d^{3} y}{d x^{3}}\right)=\frac{d}{d x} \frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d}{d x}\left(\frac{d}{d y}\left(\frac{d}{d x}\left(\frac{d y}{d x}\right)\right)\right)$
So lets first find $\mathrm{dy} / \mathrm{dx}$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3} \log \mathrm{x}\right)$
differentiating using product rule:
$\frac{d y}{d x}=x^{3} \frac{d}{d x} \log x+\log x \frac{d}{d x} x^{3}$
$\frac{d y}{d x}=\frac{x^{3}}{x}+3 x^{2} \log x$
$\left[\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1} \& \frac{\mathrm{~d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}}\right]$
$\frac{d y}{d x}=x^{2}(1+3 \log x)$
Again differentiating using product rule:
$\frac{d^{2} y}{d x^{2}}=x^{2} \frac{d}{d x}(1+3 \log x)+(1+3 \log x) \frac{d}{d x} x^{2}$
$\frac{d^{2} y}{d x^{2}}=x^{2} \times \frac{3}{x}+(1+3 \log x) \times 2 x$
$\left[\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \& \frac{d}{d x}(\log x)=\frac{1}{x}\right]$
$\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\mathrm{x}(5+6 \log \mathrm{x})$
Again differentiating using product rule:
$\frac{d^{3} y}{d x^{3}}=x \frac{d}{d x}(5+6 \log x)+(5+6 \log x) \frac{d}{d x} x$
$\frac{d^{3} y}{d x^{3}}=x \times \frac{6}{x}+(5+6 \log x)$
$\left[\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \& \frac{d}{d x}(\log x)=\frac{1}{x}\right]$
$\frac{d^{3} y}{\mathrm{dx}^{3}}=11+6 \log \mathrm{x}$
Again differentiating w.r.t x :
$\frac{d^{4} y}{d x^{4}}=\frac{6}{x} \ldots \ldots$. proved

5. Question

If $y=\log (\sin x)$, prove that: $\frac{d^{3} y}{d x^{2}}=2 \cos x \operatorname{cose}^{3} x$.

Answer

Basic idea:

$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$
\checkmark Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
As we have to prove: $\frac{d^{3} y}{d x^{2}}=2 \cos x \operatorname{cose}^{3} x$
We notice a third order derivative in the expression to be proved so first take the step to find the third order derivative.

Given, $\mathrm{y}=\log (\sin \mathrm{x})$

Let's find $-\frac{d^{3} y}{d x^{3}}$
As $\frac{\mathrm{d}^{3} y}{\mathrm{dx}^{3}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\log (\sin \mathrm{x}))$
differentiating $\sin (\log x)$ using the chain rule,
let, $t=\sin x$ and $y=\log t$
$\because \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$ [using chain rule]
$\frac{d y}{d x}=\cos x \times \frac{1}{t}$
$\left[\because \frac{d}{d x} \log x=\frac{1}{x} \& \frac{d}{d x}(\sin x)=\cos x\right]$
$\frac{d y}{d x}=\frac{\cos x}{\sin x}=\cot x$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\cot x)$
$\frac{d^{2} y}{d x^{2}}=-\operatorname{cosec}^{2} x$
$\left[\because \frac{\mathrm{d}}{\mathrm{dx}} \cot \mathrm{x}=-\operatorname{cosec}^{2} \mathrm{x}\right]$
$\frac{d^{2} y}{d x^{2}}=-\operatorname{cosec}^{2} x$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d}{d x}\left(-\operatorname{cosec}^{2} x\right)$
using the chain rule and $\frac{d}{d x} \operatorname{cosec} x=-\operatorname{cosec} x \cot x$
$\frac{d^{3} y}{d x^{3}}=-2 \operatorname{cosec} x(-\operatorname{cosec} x \cot x)$
$=2 \operatorname{cosec}^{2} x \cot x=2 \operatorname{cosec}^{2} x \frac{\cos x}{\sin x}[\because \cot x=\cos x / \sin x]$
$\therefore \frac{d^{3} y}{d x^{3}}=2 \operatorname{cosec}^{3} x \cos x \ldots \ldots$ proved

6. Question

If $y=2 \sin x+3 \cos x$, show that: $\frac{d^{2} y}{d x^{2}}+y=0$

Answer

Basic idea:
$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{{d x^{2}}^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=2 \sin x+3 \cos x$ \qquad equation 1

As we have to prove : $\frac{\mathrm{d}^{2} y}{d \mathrm{x}^{2}}+\mathrm{y}=0$.
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
$A s \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So lets first find $d y / d x$ and differentiate it again.
$\therefore \frac{d y}{d x}=\frac{d}{d x}(2 \sin x+3 \cos x)=2 \frac{d}{d x}(\sin x)+3 \frac{d}{d x}(\cos x)$
$\left[\because \frac{d}{d x}(\sin x)=\cos x \& \frac{d}{d x}(\cos x)=-\sin x\right]$
$=2 \cos x-3 \sin x$
$\therefore \frac{d y}{d x}=2 \cos x-3 \sin x$
Differentiating again with respect to x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(2 \cos x-3 \sin x)=\frac{2 d}{d x} \cos x-3 \frac{d}{d x} \sin x$
$\frac{d^{2} y}{d^{2}}=-2 \sin x-3 \cos x$
From equation 1 we have :
$y=2 \sin x+3 \cos x$
$\therefore \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=-(2 \sin \mathrm{x}+3 \cos \mathrm{x})=-\mathrm{y}$
$\therefore \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{y}=0$ proved

7. Question

If $y=\frac{\log x}{x}$, show that $\frac{d^{2} y}{d x^{2}}=\frac{2 \log x-3}{x^{3}}$.

Answer

Basic idea:

$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{{d x^{2}}_{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given, $y=\frac{\log x}{x} \ldots$ equation 1
As we have to prove $: \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{2 \log x-3}{\mathrm{x}^{3}}$..
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$ and differentiate it again.
As y is the product of two functions u and v
Let $u=\log x$ and $v=1 / x$
Using product rule of differentiation:
$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\frac{d}{d x}\left(\frac{\log x}{x}\right)=\log x \frac{d}{d x} \frac{1}{x}+\frac{1}{x} \frac{d}{d x} \log x$
$\left[\because \frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}} \& \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}\right]$
$\frac{d y}{d x}=-\frac{1}{x^{2}} \log x+\frac{1}{x^{2}}$
$\frac{d y}{d x}=\frac{1}{x^{2}}(1-\log x)$
Again using the product rule to find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$:
$\frac{d^{2} y}{d x^{2}}=(1-\log x) \frac{d}{d x} \frac{1}{x^{2}}+\frac{1}{x^{2}} \frac{d}{d x}(1-\log x)$
$\left[\because \frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})=\frac{1}{\mathrm{x}} \& \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}\right]$
$=-2\left(\frac{1-\log x}{x^{3}}\right)-\frac{1}{x^{3}}$
$\therefore \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{2 \log \mathrm{x}-3}{\mathrm{x}^{3}} \ldots .$. proved

8. Question

If $x=a \sec \theta, y=b \tan \theta$, prove that $\frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}}$.

Answer

Idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$ i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
Given,
$x=a \sec \theta \ldots .$. equation 1
$y=b \tan \theta \ldots .$. equation 2
to prove : $\frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}}$.
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$ using parametric form and differentiate it again.
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{a} \sec \theta=\mathrm{a} \sec \theta \tan \theta \ldots$. equation 3
Similarly, $\frac{d y}{d \theta}=b \sec ^{2} \theta \ldots \ldots$ equation 4
$\left[\because \frac{d}{d x} \sec x=\sec x \tan x, \frac{d}{d x} \tan x=\sec ^{2} x\right]$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{b \sec ^{2} \theta}{a \operatorname{asec} \theta \tan \theta}=\frac{b}{a} \operatorname{cosec} \theta$
Differentiating again w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{b}{a} \operatorname{cosec} \theta\right)$
$\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \operatorname{cosec} \theta \cot \theta \frac{d \theta}{d x} \ldots .$. equation 5 [using chain rule]
From equation 3:
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a} \sec \theta \tan \theta$
$\therefore \frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{1}{\mathrm{a} \sec \theta \tan \theta}$
Putting the value in equation 5 :
$\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \operatorname{cosec} \theta \cot \theta \frac{1}{a \sec \theta \tan \theta}$
$\frac{d^{2} y}{d x^{2}}=\frac{-b}{a^{2} \tan ^{3} \theta}$

From equation 1:
$y=b \tan \theta$
$\therefore \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{-\mathrm{b}}{\frac{\mathrm{a}^{2} \mathrm{y}^{3}}{\mathrm{~b}^{3}}}=-\frac{\mathrm{b}^{4}}{\mathrm{a}^{2} \mathrm{y}^{3}} \ldots$. proved.

9. Question

If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ prove that
$\frac{d^{2} x}{d \theta^{2}}=a(\cos \theta-\theta \sin \theta), \frac{d^{2} y}{d \theta^{2}}=a(\sin \theta+\theta \cos \theta)$ and $\frac{d^{2} y}{d x^{2}}=\frac{\sec ^{3} \theta}{a \theta}$.

Answer

Basic idea:

$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{{d x^{2}}^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{d f}{d x}=\frac{d v}{d t} \times \frac{d t}{d x}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\sqrt{ }$ Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

The idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$, i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d \theta}{d \theta}}$
Given,
$x=a(\cos \theta+\theta \sin \theta)$ \qquad equation 1
$y=a(\sin \theta-\theta \cos \theta) \ldots .$. equation 2
to prove :
i) $\frac{d^{2} x}{d \theta^{2}}=a(\cos \theta-\theta \sin \theta)$
ii) $\frac{d^{2} y}{d \theta^{2}}=a(\sin \theta+\theta \cos \theta)$
iii) $\frac{d^{2} y}{d x^{2}}=\frac{\sec ^{3} \theta}{a \theta}$.

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^{2} y}{d x^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
$\frac{d x}{d \theta}=\frac{d}{d \theta} a(\cos \theta+\theta \sin \theta)$
$=\mathrm{a}(-\sin \theta+\theta \cos \theta+\sin \theta)$
[differentiated using product rule for $\theta \sin \theta$]
$=\mathrm{a} \theta \cos \theta$..eqn 4
Again differentiating w.r.t θ using product rule:-
$\frac{d^{2} x}{d \theta^{2}}=a(-\theta \sin \theta+\cos \theta)$
$\therefore \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{d} \theta^{2}}=\mathrm{a}(\cos \theta-\theta \sin \theta) \ldots$ proved (i)
Similarly,
$\frac{d y}{d \theta}=\frac{d}{d \theta} a(\sin \theta-\theta \cos \theta)=a \frac{d}{d \theta} \sin \theta-a \frac{d}{d \theta}(\theta \cos \theta)$
$=a \cos \theta+a \theta \sin \theta-a \cos \theta$
$\therefore \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a} \theta \sin \theta$ \qquad equation 5

Again differentiating w.r.t θ using product rule:-
$\frac{d^{2} x}{d \theta^{2}}=a(\theta \cos \theta+\sin \theta)$
$\therefore \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{d} \theta^{2}}=\mathrm{a}(\sin \theta+\theta \cos \theta) \ldots$ proved (ii)
$\because \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
Using equation 4 and 5 :
$\frac{d y}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
\therefore again differentiating w.r.t x :
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \tan \theta$
$=\sec ^{2} \theta \frac{\mathrm{~d} \theta}{\mathrm{dx}}$ [using chain rule]
$\because \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a} \theta \cos \theta \Rightarrow>\frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{1}{\mathrm{a} \theta \cos \theta}$
Putting a value in the above equation-
We have:
$\frac{d^{2} y}{d x^{2}}=\sec ^{2} \theta \times \frac{1}{a \theta \cos \theta}$
$\frac{d^{2} y}{d x^{2}}=\frac{\sec ^{3} \theta}{a \theta} \ldots \ldots$ proved (iii)

10. Question

If $y=e^{x} \cos x$, prove that $\frac{d^{2} y}{d x^{2}}=2 e^{x} \cos \left(x+\frac{\pi}{2}\right)$

Answer

Basic idea:

$\sqrt{ }$ Second order derivative is nothing but derivative of derivative i.e. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
$\sqrt{ }$ The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f=v(u(x))$. For the sake of simplicity just assume $t=u(x)$

Then $f=v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$
$\sqrt{ }$ Product rule of differentiation- $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
\checkmark Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:
Given,
$y=e^{x} \cos x$
TO prove :
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=2 \mathrm{e}^{\mathrm{x}} \cos \left(\mathrm{x}+\frac{\pi}{2}\right)$
Clearly from the expression to be proved we can easily observe that we need to just find the second derivative of given function.

Given, $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}$
We have to find $\frac{d^{2} y}{d x^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So lets first find $\mathrm{dy} / \mathrm{dx}$ and differentiate it again.
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}\right)$
Let $u=e^{x}$ and $v=\cos x$
As, $\mathrm{y}=\mathrm{u}^{*} \mathrm{v}$
\therefore Using product rule of differentiation:
$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\therefore \frac{d y}{d x}=e^{x} \frac{d}{d x}(\cos x)+\cos x \frac{d y}{d x} e^{x}$
$\frac{d y}{d x}=-e^{x} \sin x+e^{x} \cos x\left[\because \frac{d}{d x}(\cos x)=-\sin x \& \frac{d}{d x} e^{x}=e^{x}\right]$
Again differentiating w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(-e^{x} \sin x+e^{x} \cos x\right)$
$=\frac{d}{d x}\left(-\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}\right)+\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}\right)$
Again using the product rule :
$\frac{d^{2} y}{d x^{2}}=-e^{x} \frac{d}{d x}(\sin x)-\sin x \frac{d}{d x} e^{x}+e^{x} \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}\left(e^{x}\right)$
$\frac{d^{2} y}{d x^{2}}=-e^{x} \cos x-e^{x} \sin x-e^{x} \sin x+e^{x} \cos x$
$\left[\because \frac{d}{d x}(\cos x)=-\sin x, \frac{d}{d x} e^{-x}=-e^{-x}\right]$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}=-2 \mathrm{e}^{\mathrm{x}} \sin \mathrm{x}[\because-\sin \mathrm{x}=\cos (\mathrm{x}+\pi / 2)]$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-2 \mathrm{e}^{\mathrm{x}} \cos \left(\mathrm{x}+\frac{\pi}{2}\right) \ldots$.... proved

11. Question

If $x=a \cos \theta, y=b \sin \theta$, show that $\frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}}$.

Answer

Idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$ i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d g}}{\frac{d 8}{d \theta}}$
Given,
$x=a \cos \theta \ldots . .$. equation 1
$\mathrm{y}=\mathrm{b} \sin \theta$......equation 2
to prove : $\frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}}$.
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{d x^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$ using parametric form and differentiate it again.
$\frac{d x}{d \theta}=\frac{d}{d \theta} a \cos \theta=-a \sin \theta \ldots .$. equation 3
Similarly, $\frac{d y}{d \theta}=b \cos \theta$......equation 4
$\left[\because \frac{d}{d x} \cos x=-\sin x \tan x, \frac{d}{d x} \sin x=\cos x\right.$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=-\frac{b \cos \theta}{a \sin \theta}=-\frac{b}{a} \cot \theta$
Differentiating again w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(-\frac{b}{a} \cot \theta\right)$
$\frac{d^{2} y}{d x^{2}}=\frac{b}{a} \operatorname{cosec}^{2} \theta \frac{d \theta}{d x} \ldots$. equation 5
[using chain rule and $\frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x$]
From equation 3:
$\frac{d x}{d \theta}=-a \sin \theta$
$\therefore \frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{-1}{\mathrm{a} \sin \theta}$
Putting the value in equation 5 :
$\frac{d^{2} y}{d x^{2}}=-\frac{b}{a} \operatorname{cosec}^{2} \theta \frac{1}{a \sin \theta}$
$\frac{d^{2} y}{d x^{2}}=\frac{-b}{a^{2} \sin ^{3} \theta}$
From equation 1:
$y=b \sin \theta$
$\therefore \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{-\mathrm{b}}{\frac{\mathrm{a}^{2} \mathrm{y}^{3}}{\mathrm{~b}^{3}}}=-\frac{\mathrm{b}^{4}}{\mathrm{a}^{2} \mathrm{y}^{3}} \ldots$. proved.

12. Question

If $x=a\left(1-\cos ^{3} \theta\right), y=a \sin ^{3} \theta$, Prove that $\frac{d^{2} y}{d x^{2}}=\frac{32}{27 a}$ at $\theta=\frac{\pi}{6}$.

Answer

Idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$ i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write : $\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
Given,
$x=a\left(1-\cos ^{3} \theta\right) \ldots$...equation 1
$y=a \sin ^{3} \theta, \ldots \ldots$ equation 2
to prove : $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{32}{27 \mathrm{a}}$ at $\theta=\frac{\pi}{6}$.
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So, lets first find $d y / d x$ using parametric form and differentiate it again.
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{a}\left(1-\cos ^{3} \theta\right)=3 \operatorname{acos}^{2} \theta \sin \theta \ldots$. equation 3 [using chain rule]
Similarly,
$\frac{d y}{d \theta}=\frac{d}{d \theta} a \sin ^{3} \theta=3 \operatorname{asin}^{2} \theta \cos \theta \ldots \ldots$. equation 4
$\left[\because \frac{d}{d x} \cos x=-\sin x \& \frac{d}{d x} \cos x=\sin x\right]$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{3 \operatorname{asin}^{2} \theta \cos \theta}{3 \operatorname{acos}^{2} \theta \sin \theta}=\tan \theta$
Differentiating again w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\tan \theta)$
$\frac{d^{2} y}{d x^{2}}=\sec ^{2} \theta \frac{d \theta}{d x} \ldots .$. equation 5
[using chain rule and $\frac{d}{d x} \tan x=\sec ^{2} x$]
From equation 3 :
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=3 \mathrm{a} \cos ^{2} \theta \sin \theta$
$\therefore \frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{1}{3 \mathrm{acos}^{2} \theta \sin \theta}$
Putting the value in equation 5 :
$\frac{d^{2} y}{d x^{2}}=\sec ^{2} \theta \frac{1}{3 \operatorname{acos}^{2} \theta \sin \theta}$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{1}{3 \operatorname{acos}^{4} \theta \sin \theta}$
Put $\theta=\pi / 6$
$\left(\frac{d^{2} y}{\mathrm{dx}^{2}}\right)$ at $\left(\mathrm{x}=\frac{\pi}{6}\right)=\frac{1}{3 \operatorname{acos}^{4} \frac{\pi}{6} \sin \frac{\pi}{6}}=\frac{1}{3 \mathrm{a}\left(\frac{\sqrt{3}}{2}\right)^{4} \frac{1}{2}}$
$\therefore\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}\right)$ at $\left(\mathrm{x}=\frac{\pi}{6}\right)=\frac{32}{27 \mathrm{a}} \ldots$
proved

13. Question

If $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$, prove that $\frac{d^{2} y}{d x^{2}}=-\frac{a}{y^{2}}$.

Answer

Idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$ i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d 8}{d \theta}}$
Given,
$x=a(\theta+\sin \theta) \ldots . .$. equation 1
$y=a(1+\cos \theta) \ldots . .$. equation 2
to prove $: \frac{d^{2} y}{d x^{2}}=-\frac{a}{y^{2}}$
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$ using parametric form and differentiate it again.
$\frac{d x}{d \theta}=\frac{d}{d \theta} a(\theta+\sin \theta)=a(1+\cos \theta)=y[\because$ from equation 2$] \ldots .$. equation 3
Similarly,
$\frac{d y}{d \theta}=\frac{d}{d \theta} a(1+\cos \theta)=-a \sin \theta \ldots \ldots$ equation 4
$\left[\because \frac{d}{d x} \cos x=-\sin x, \frac{d}{d x} \sin x=\cos x\right.$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-a \sin \theta}{a(1+\cos \theta)}=\frac{-\sin \theta}{(1+\cos \theta)}=\frac{-a \sin \theta}{y}[\because$ from equation 2$] \ldots$. equation 5
Differentiating again w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=-a \frac{d}{d x}\left(\frac{\sin \theta}{y}\right)$
Using product rule and chain rule of differentiation together:
$\frac{d^{2} y}{d x^{2}}=-a\left(\frac{\sin \theta}{-y^{2}} \frac{d y}{d x}+\frac{1}{y} \cos \theta \frac{d \theta}{d x}\right)$
$\frac{d^{2} y}{d x^{2}}=-a\left(\frac{\sin \theta}{-y^{2}} \frac{(-a \sin \theta)}{y}+\frac{1}{y} \cos \theta \frac{1}{y}\right)$ [using equation 3 and 5]
$\frac{d^{2} y}{d x^{2}}=-a\left(\frac{a \sin ^{2} \theta}{y^{3}}+\frac{1}{y^{2}} \cos \theta\right)$
$\frac{d^{2} y}{d x^{2}}=-\frac{a}{y^{2}}\left(\frac{a \sin ^{2} \theta}{a(1+\cos \theta)}+\cos \theta\right)$ [from equation 1]
$\frac{d^{2} y}{d x^{2}}=-\frac{a}{y^{2}}\left(\frac{1-\cos ^{2} \theta}{(1+\cos \theta)}+\cos \theta\right)$
$\frac{d^{2} y}{d x^{2}}=-\frac{a}{y^{2}}\left(\frac{(1-\cos \theta)(1+\cos \theta)}{(1+\cos \theta)}+\cos \theta\right)$
$\frac{d^{2} y}{d^{2}}=-\frac{a}{y^{2}}(1-\cos \theta+\cos \theta)$
$\therefore \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\frac{\mathrm{a}}{\mathrm{y}^{2}} \ldots$ proved

14. Question

If $x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ find $\frac{d^{2} y}{d x^{2}}$.

Answer

Idea of parametric form of differentiation:

If $y=f(\theta)$ and $x=g(\theta)$ i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
Given,
$x=a(\theta-\sin \theta) \ldots .$. equation 1
$y=a(1+\cos \theta) \ldots \ldots$ equation 2
to find : $\frac{d^{2} y}{d x^{2}}$
As, $\frac{d^{2} y}{d^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So, lets first find $d y / d x$ using parametric form and differentiate it again.
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{a}(\theta-\sin \theta)=\mathrm{a}(1-\cos \theta) \ldots$. equation 3
Similarly,
$\frac{d y}{d \theta}=\frac{d}{d \theta} \mathrm{a}(1+\cos \theta)=-a \sin \theta$ \qquad equation 4
$\left[\because \frac{d}{d x} \cos x=-\sin x, \frac{d}{d x} \sin x=\cos x\right.$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-a \sin \theta}{a(1-\cos \theta)}=\frac{-\sin \theta}{(1-\cos \theta)} \ldots$. equation 5
Differentiating again w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=-\frac{d}{d x}\left(\frac{\sin \theta}{1-\cos \theta}\right)$
Using product rule and chain rule of differentiation together:
$\frac{d^{2} y}{d x x^{2}}=\left\{-\frac{1}{1-\cos \theta} \frac{d}{d \theta} \sin \theta-\sin \theta \frac{d}{d \theta} \frac{1}{(1-\cos \theta)}\right\} \frac{d \theta}{d x}$
Apply chain rule to determine $\frac{d}{d \theta} \frac{1}{(1-\cos \theta)}$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\left\{\frac{-\cos \theta}{1-\cos \theta}+\frac{\sin ^{2} \theta}{(1-\cos \theta)^{2}}\right\} \frac{1}{\mathrm{a}(1-\cos \theta)}$ [using equation 3]
$\frac{d^{2} y}{d x^{2}}=\left\{\frac{-\cos \theta(1-\cos \theta)+\sin ^{2} \theta}{(1-\cos \theta)^{2}}\right\} \frac{1}{a(1-\cos \theta)}$
$\frac{d^{2} y}{d x^{2}}=\left\{\frac{-\cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}{(1-\cos \theta)^{2}}\right\} \frac{1}{a(1-\cos \theta)}$
$\frac{d^{2} y}{d x^{2}}=\left\{\frac{1-\cos \theta}{(1-\cos \theta)^{2}}\right\} \frac{1}{a(1-\cos \theta)}\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\frac{d^{2} y}{d x^{2}}=\frac{1}{a(1-\cos \theta)^{2}}$
$\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{1}{\mathrm{a}\left(2 \sin ^{2} \frac{\theta}{2}\right)^{2}}\left[\because 1-\cos \theta=2 \sin ^{2} \theta / 2\right]$
$\therefore \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{1}{4 \mathrm{a}} \operatorname{cosec}^{4} \frac{\theta}{2}$

15. Question

If $x=a(1-\cos \theta), y=a(\theta+\sin \theta)$, prove that $\frac{d^{2} y}{d x^{2}}=-\frac{1}{a} a t \theta=\frac{\pi}{2}$

Answer

Idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$ i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
Given,
$y=a(\theta+\sin \theta) \ldots .$. equation 1
$x=a(1-\cos \theta) \ldots .$. equation 2
to prove : $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\frac{1}{\mathrm{a}}$ at $\theta=\frac{\pi}{2}$.
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx} \mathrm{x}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$ using parametric form and differentiate it again.
$\frac{d y}{d \theta}=\frac{d}{d \theta} a(\theta+\sin \theta)=a(1+\cos \theta) \ldots$. equation 3
Similarly,
$\frac{d x}{d \theta}=\frac{d}{d \theta} a(1-\cos \theta)=a \sin \theta$ \qquad equation 4
$\left[\because \frac{d}{d x} \cos x=-\sin x, \frac{d}{d x} \sin x=\cos x\right]$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a(1+\cos \theta)}{a \sin \theta}=\frac{(1+\cos \theta)}{\sin \theta} \ldots$.equation 5
Differentiating again w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{(1+\cos \theta)}{\sin \theta}\right)=\frac{d}{d x}(1+\cos \theta) \operatorname{cosec} \theta$
Using product rule and chain rule of differentiation together:
$\frac{d^{2} y}{d x^{2}}=\left\{\operatorname{cosec} \theta \frac{d}{d \theta}(1+\cos \theta)+(1+\cos \theta) \frac{d}{d \theta} \operatorname{cosec} \theta\right\} \frac{d \theta}{d x}$
$\frac{d^{2} y}{{d x^{2}}^{2}}=\{\operatorname{cosec} \theta(-\sin \theta)+(1+\cos \theta)(-\operatorname{cosec} \theta \cot \theta)\} \frac{1}{\operatorname{asin} \theta}[$ using equation 4]
$\frac{d^{2} y}{d x^{2}}=\left\{-1-\operatorname{cosec} \theta \cot \theta-\cot ^{2} \theta\right\} \frac{1}{a \sin \theta}$
As we have to find $\frac{d^{2} y}{{d x^{2}}_{2}^{a}}=-\frac{1}{a}$ at $\theta=\frac{\pi}{2}$
\therefore put $\theta=\pi / 2$ in above equation:
$\frac{d^{2} y}{d x^{2}}=\left\{-1-\operatorname{cosec} \frac{\pi}{2} \cot \frac{\pi}{2}-\cot ^{2} \frac{\pi}{2}\right\} \frac{1}{\operatorname{asin} \frac{\pi}{2}}=\frac{\{-1-0-0\} 1}{a}$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\frac{1}{\mathrm{a}} \ldots . \mathrm{ans}$

16. Question

If $x=a(1+\cos \theta), y=a(\theta+\sin \theta)$ Prove that $\frac{d^{2} y}{d x^{2}}=\frac{-1}{a}$ at $\theta=\frac{\pi}{2}$.

Answer

Idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$ i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d 8}{d \theta}}$
Given,
$y=a(\theta+\sin \theta) \ldots . .$. equation 1
$x=a(1+\cos \theta) \ldots . .$. equation 2
to prove : $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\frac{1}{a}$ at $\theta=\frac{\pi}{2}$.
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{d x^{2}}$
As, $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$ using parametric form and differentiate it again.
$\frac{d y}{d \theta}=\frac{d}{d \theta} a(\theta+\sin \theta)=a(1+\cos \theta) \cdot \ldots$ equation 3
Similarly,
$\frac{d x}{d \theta}=\frac{d}{d \theta} a(1+\cos \theta)=-a \sin \theta \ldots$, .equation 4
$\left[\because \frac{d}{d x} \cos x=-\sin x, \frac{d}{d x} \sin x=\cos x\right]$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d y}}{\frac{d x}{d \theta}}=\frac{a(1+\cos \theta)}{-\sin \theta}=-\frac{(1+\cos \theta)}{\sin \theta} \ldots .$. equation 5
Differentiating again w.r.t x :
$\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(-\frac{(1+\cos \theta)}{\sin \theta}\right)=-\frac{d}{d x}(1+\cos \theta) \operatorname{cosec} \theta$
Using product rule and chain rule of differentiation together:
$\frac{d^{2} y}{d x^{2}}=-\left\{\operatorname{cosec} \theta \frac{d}{d \theta}(1+\cos \theta)+(1+\cos \theta) \frac{d}{d \theta} \operatorname{cosec} \theta\right\} \frac{d \theta}{d x}$
$\frac{d^{2} y}{{d x^{2}}_{2}}=-\{\operatorname{cosec} \theta(-\sin \theta)+(1+\cos \theta)(-\operatorname{cosec} \theta \cot \theta)\} \frac{1}{(-\operatorname{asin} \theta)}$
[using equation 4]
$\frac{d^{2} y}{{d x^{2}}^{2}}=\left\{-1-\operatorname{cosec} \theta \cot \theta-\cot ^{2} \theta\right\} \frac{1}{\operatorname{asin} \theta}$
As we have to find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\frac{1}{a}$ at $\theta=\frac{\pi}{2}$
\therefore put $\theta=\pi / 2$ in above equation:
$\frac{d^{2} y}{d x^{2}}=\left\{-1-\operatorname{cosec} \frac{\pi}{2} \cot \frac{\pi}{2}-\cot ^{2} \frac{\pi}{2}\right\} \frac{1}{a \sin \frac{\pi}{2}}=\frac{\{-1-0-0\} 1}{a}$
$\frac{d^{2} y}{d^{2}}=-\frac{1}{a}$

17. Question

If $x=\cos \theta, y=\sin ^{3} \theta$. Prove that $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=3 \sin ^{2} \theta\left(5 \cos ^{2} \theta-1\right)$

Answer

The idea of parametric form of differentiation:
If $y=f(\theta)$ and $x=g(\theta)$, i.e. y is a function of θ and x is also some other function of θ.
Then $d y / d \theta=f^{\prime}(\theta)$ and $d x / d \theta=g^{\prime}(\theta)$
We can write $: \frac{d y}{d x}=\frac{\frac{d y}{d y}}{\frac{d x}{d \theta}}$
Given,
$y=\sin ^{3} \theta$ \qquad equation 1
$x=\cos \theta$ \qquad equation 2

To prove: $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=3 \sin ^{2} \theta\left(5 \cos ^{2} \theta-1\right)$
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$ using parametric form and differentiate it again.
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=-\sin \theta$ \qquad equation 3

Applying chain rule to differentiate $\sin ^{3} \theta$:
$\frac{d y}{d \theta}=3 \sin ^{2} \theta \cos \theta$ \qquad equation 4
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d 8}{d \theta}}=\frac{3 \sin ^{2} \theta \cos \theta}{-\sin \theta}=-3 \sin \theta \cos \theta$ \qquad equation 5

Again differentiating w.r.t x:
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
$\frac{d^{2} y}{d^{2}}=\frac{d}{d x}(-3 \sin \theta \cos \theta)$

Applying product rule and chain rule to differentiate:
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-3\left\{\sin \theta \frac{\mathrm{~d}}{\mathrm{~d} \theta} \cos \theta+\cos \theta \frac{\mathrm{d}}{\mathrm{d} \theta} \sin \theta\right\} \frac{\mathrm{d} \theta}{\mathrm{dx}}$
$\frac{d^{2} y}{{d x^{2}}_{2}^{2}}=3\left\{-\sin ^{2} \theta+\cos ^{2} \theta\right\} \frac{1}{\sin \theta}$
[using equation 3 to put the value of $d \theta / d x$]
Multiplying y both sides to approach towards the expression we want to prove-
$y \frac{d^{2} y}{d x^{2}}=3\left\{-\sin ^{2} \theta+\cos ^{2} \theta\right\} \frac{y}{\sin \theta}$
$y \frac{d^{2} y}{d x^{2}}=3\left\{-\sin ^{2} \theta+\cos ^{2} \theta\right\} \sin ^{2} \theta$
[from equation 1, substituting for y]
Adding equation 5 after squaring it:
$y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=3\left\{-\sin ^{2} \theta+\cos ^{2} \theta\right\} \sin ^{2} \theta+9 \sin ^{2} \theta \cos ^{2} \theta$
$y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=3 \sin ^{2} \theta\left\{-\sin ^{2} \theta+\cos ^{2} \theta+3 \cos ^{2} \theta\right\}$
$y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=3 \sin ^{2} \theta\left\{5 \cos ^{2} \theta-1\right\}$ \qquad

18. Question

If $y=\sin (\sin x)$, prove that $: \frac{d^{2} y}{d x^{2}}+\tan x \cdot \frac{d y}{d x}+y \cos ^{2} x=0$

Answer

Given,
$y=\sin (\sin x)$......equation 1
To prove: $\frac{d^{2} y}{d x^{2}}+\tan x \cdot \frac{d y}{d x}+y \cos ^{2} x=0$
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$
$\frac{d y}{d x}=\frac{d}{d x} \sin (\sin x)$
Using chain rule, we will differentiate the above expression
Let $\mathrm{t}=\sin \mathrm{x} \Rightarrow \frac{\mathrm{dt}}{\mathrm{dx}}=\cos \mathrm{x}$
$\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
$\frac{d y}{d x}=\cos t \cos x=\cos (\sin x) \cos x \ldots . .$. equation 2
Again differentiating with respect to x applying product rule:
$\frac{d^{2} y}{d x^{2}}=\cos x \frac{d}{d x} \cos (\sin x)+\cos (\sin x) \frac{d}{d x} \cos x$
Using chain rule again in the next step-
$\frac{d^{2} y}{d x^{2}}=-\cos x \cos x \sin (\sin x)-\sin x \cos (\sin x)$
$\frac{d^{2} y}{d x^{2}}=-y \cos ^{2} x-\tan x \cos x \cos (\sin x)$
[using equation $1: y=\sin (\sin x)$]
And using equation 2 , we have:
$\frac{d^{2} y}{d x^{2}}=-y \cos ^{2} x-\tan x \frac{d y}{d x}$
$\frac{d^{2} y}{d x^{2}}+y \cos ^{2} x+\tan x \frac{d y}{d x}=0 \ldots \ldots$. proved

19. Question

If $y=\left(\sin ^{-1} x\right)^{2}$, prove that: $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$

Answer

Note: y_{2} represents second order derivative i.e. $\frac{d^{2} y}{{d x^{2}}^{2}}$ and $y_{1}=d y / d x$
Given,
$y=\left(\sin ^{-1} x\right)^{2} \ldots . .$. equation 1
to prove : $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$
We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.
Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$
$\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)^{2}$
Using chain rule we will differentiate the above expression
Let $t=\sin ^{-1} x=>\frac{d t}{d x}=\frac{1}{\sqrt{\left(1-x^{2}\right)}}$ [using formula for derivative of $\sin ^{-1} x$]
And $\mathrm{y}=\mathrm{t}^{2}$
$\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
$\frac{d y}{d x}=2 t \frac{1}{\sqrt{\left(1-x^{2}\right)}}=2 \sin ^{-1} x \frac{1}{\sqrt{\left(1-x^{2}\right)}} \ldots \ldots .$. equation 2
Again differentiating with respect to x applying product rule:
$\frac{d^{2} y}{d^{2}}=2 \sin ^{-1} x \frac{d}{d x}\left(\frac{1}{\sqrt{1-x^{2}}}\right)+\frac{2}{\sqrt{\left(1-x^{2}\right)}} \frac{d}{d x} \sin ^{-1} x$
$\frac{d^{2} y}{d x^{2}}=-\frac{2 \sin ^{-1} x}{2\left(1-x^{2}\right) \sqrt{1-x^{2}}}(-2 x)+\frac{2}{\left(1-x^{2}\right)}$ [using $\left.\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{\left(1-x^{2}\right)}}\right]$
$\frac{d^{2} y}{d x^{2}}=\frac{2 x \sin ^{-1} x}{\left(1-x^{2}\right) \sqrt{1-x^{2}}}+\frac{2}{\left(1-x^{2}\right)}$
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2-\frac{2 x \sin ^{-1} x}{\sqrt{1-x^{2}}}$
Using equation 2 :
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2-x \frac{d y}{d x}$
$\therefore\left(1-\mathrm{x}^{2}\right) \mathrm{y}_{2}-\mathrm{xy}_{1}-2=0 \ldots . .$. proved

20. Question

If $y=\left(\sin ^{-1} x\right)^{2}$, prove that: $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$

Answer

Note: y_{2} represents second order derivative i.e. $\frac{d^{2} y}{d x^{2}}$ and $y_{1}=d y / d x$
Given,
$y=\left(\sin ^{-1} x\right)^{2} \ldots . .$. equation 1
to prove : $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^{2} y}{d x^{2}}$
As, $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$
$\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)^{2}$
Using chain rule we will differentiate the above expression
Let $t=\sin ^{-1} x=>\frac{d t}{d x}=\frac{1}{\sqrt{\left(1-x^{2}\right)}}$ [using formula for derivative of $\sin ^{-1} x$]
And $\mathrm{y}=\mathrm{t}^{2}$
$\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
$\frac{d y}{d x}=2 t \frac{1}{\sqrt{\left(1-x^{2}\right)}}=2 \sin ^{-1} x \frac{1}{\sqrt{\left(1-x^{2}\right)}} \ldots \ldots$. equation 2
Again differentiating with respect to x applying product rule:
$\frac{d^{2} y}{d^{2}}=2 \sin ^{-1} x \frac{d}{d x}\left(\frac{1}{\sqrt{1-x^{2}}}\right)+\frac{2}{\sqrt{\left(1-x^{2}\right)}} \frac{d}{d x} \sin ^{-1} x$
$\frac{d^{2} y}{d x^{2}}=-\frac{2 \sin ^{-1} x}{2\left(1-x^{2}\right) \sqrt{1-x^{2}}}(-2 x)+\frac{2}{\left(1-x^{2}\right)}\left[\right.$ using $\left.\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{\left(1-x^{2}\right)}}\right]$
$\frac{d^{2} y}{d^{2}}=\frac{2 x \sin ^{-1} x}{\left(1-x^{2}\right) \sqrt{1-x^{2}}}+\frac{2}{\left(1-x^{2}\right)}$
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2+\frac{2 x \sin ^{-1} x}{\sqrt{1-x^{2}}}$
Using equation 2 :
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2+x \frac{d y}{d x}$
$\therefore\left(1-\mathrm{x}^{2}\right) \mathrm{y}_{2}-\mathrm{xy}_{1}-2=0 \ldots .$. proved

21. Question

If $y=e^{\tan -1 x}$, Prove that: $\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$

Answer

Note: y_{2} represents second order derivative i.e. $\frac{d^{2} y}{d x^{2}}$ and $y_{1}=d y / d x$
Given,
$y=e^{\tan -1 x}$ \qquad equation 1
to prove: $\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} y}{d \mathrm{x}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$
$\frac{d y}{d x}=\frac{d}{d x} e^{\tan ^{-1} x}$
Using chain rule we will differentiate the above expression
Let $\mathrm{t}=\tan ^{-1} \mathrm{x}=>\frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}\left[\frac{\mathrm{~d}}{\mathrm{dx}} \tan ^{-1} \mathrm{x}=\frac{1}{1+\mathrm{x}^{2}}\right]$
And $\mathrm{y}=\mathrm{e}^{\mathrm{t}}$
$\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{t}} \frac{1}{1+\mathrm{x}^{2}}=\frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{1+\mathrm{x}^{2}} \cdots .$. equation 2
Again differentiating with respect to x applying product rule:
$\frac{d^{2} y}{d x^{2}}=e^{\tan ^{-1} x} \frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)+\frac{1}{1+x^{2}} \frac{d}{d x} e^{\tan ^{-1} x}$
Using chain rule we will differentiate the above expression-
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\left(\frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right)-\frac{2 \mathrm{xe}^{\tan -1 \mathrm{x}}}{\left(1+\mathrm{x}^{2}\right)^{2}}$ [using equation $2 ; \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1} \& \frac{\mathrm{~d}}{\mathrm{dx}} \tan ^{-1} \mathrm{x}=\frac{1}{1+\mathrm{x}^{2}}$]
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}}-\frac{2 x^{\tan ^{-1} x}}{1+x^{2}}$
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}}(1-2 x)$
Using equation 2 :
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}(1-2 x)$
$\therefore\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0 \ldots .$. proved

22. Question

If $y=3 \cos (\log x)+4 \sin (\log x)$, prove that: $x^{2} y_{2}+x y_{1}+y=0$.

Answer

Note: y_{2} represents second order derivative i.e. $\frac{d^{2} y}{{d x^{2}}^{2}}$ and $y_{1}=d y / d x$
Given,
$y=3 \cos (\log x)+4 \sin (\log x)$ \qquad equation 1
to prove: $x^{2} y_{2}+x y_{1}+y=0$
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$
$\frac{d y}{d x}=\frac{d}{d x}(3 \cos (\log x)+4 \sin (\log x))$
Let, $\log x=t$
$\therefore \mathrm{y}=3 \cos \mathrm{t}+4 \sin \mathrm{t}$ \qquad equation 2
$\frac{d y}{d t}=-3 \sin t+4 \cos t$
$\frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1}{\mathrm{x}}$ \qquad .equation 3
$\therefore \frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
$\frac{d y}{d x}=(-3 \sin t+4 \cos t) \frac{1}{x} \ldots \ldots \ldots$ equation 4

Again differentiating w.r.t x :
Using product rule of differentiation we have
$\frac{d^{2} y}{d x^{2}}=(-3 \sin \mathrm{t}+4 \cos \mathrm{t}) \frac{d}{d x} \frac{1}{\mathrm{x}}+\frac{1}{\mathrm{x}} \frac{d}{d x}(-3 \sin \mathrm{t}+4 \cos \mathrm{t})$
$\frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}}(-3 \sin t+4 \cos \mathrm{t})+\frac{1}{\mathrm{x}} \frac{\mathrm{dt}}{\mathrm{dx}}(-3 \cos \mathrm{t}-4 \sin \mathrm{t})$
Using equation 2,3 and 4 we can substitute above equation as:
$\frac{d^{2} y}{d x^{2}}=-\frac{1}{x^{2}} x \frac{d y}{d x}+\frac{1}{x} \frac{1}{x}(-y)$
$\frac{d^{2} y}{d x^{2}}=-\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}$
Multiplying x^{2} both sides:
$x^{2} \frac{d^{2} y}{d x^{2}}=-x \frac{d y}{d x}-y$
$\therefore \mathrm{x}^{2} \mathrm{y}_{2}+\mathrm{xy}_{1}+\mathrm{y}=0$ \qquad proved

23. Question

If $y=e^{2 x}(a x+b)$, show that $y_{2}-4 y_{1}+4 y=0$.

Answer

Note: y_{2} represents second order derivative i.e. $\frac{d^{2} y}{d x^{2}}$ and $y_{1}=d y / d x$
Given,
$y=e^{2 x}(a x+b)$......equation 1
to prove: $\mathrm{y}_{2}-4 \mathrm{y}_{1}+4 \mathrm{y}=0$
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$
$\because y=e^{2 x}(a x+b)$
Using product rule to find $\mathrm{dy} / \mathrm{dx}$:
$\frac{d y}{d x}=e^{2 x} \frac{d y}{d x}(a x+b)+(a x+b) \frac{d}{d x} e^{2 x}$
$\frac{d y}{d x}=a e^{2 x}+2(a x+b) e^{2 x}$
$\frac{d y}{d x}=e^{2 x}(a+2 a x+2 b) \ldots \ldots .$. equation 2
Again differentiating w.r.t \times using product rule:
$\frac{d^{2} y}{d x^{2}}=e^{2 x} \frac{d y}{d x}(a+2 a x+2 b)+(a+2 a x+2 b) \frac{d}{d x} e^{2 x}$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx} \mathrm{x}^{2}}=2 \mathrm{ae}^{2 \mathrm{x}}+2(\mathrm{a}+2 \mathrm{ax}+2 \mathrm{~b}) \mathrm{e}^{2 \mathrm{x}}$. \qquad equation 3

In order to prove the expression try to get the required form:
Subtracting $4 *$ equation 2 from equation 3 :
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}=2 a^{2 x}+2(a+2 a x+2 b) e^{2 x}-4 e^{2 x}(a+2 a x+2 b)$
$\frac{d^{2} y}{d^{2}}-4 \frac{d y}{d x}=2 a^{2 x}-2 e^{2 x}(a+2 a x+2 b)$
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}=-4 e^{2 x}(a x+b)$

Using equation 1 :
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}=-4 y$
$\therefore \mathrm{y}_{2}-4 \mathrm{y}_{1}+4 \mathrm{y}=0$ \qquad proved

24. Question

If $x=\sin \left(\frac{1}{a} \log y\right)$, show that $\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y=0$

Answer

Note: y_{2} represents second order derivative i.e. $\frac{d^{2} y}{{d x^{2}}^{2}}$ and $y_{1}=d y / d x$
Given,
$x=\sin \left(\frac{1}{a} \log y\right)$
$(\log y)=a \sin ^{-1} x$
$y=e^{a \sin ^{-1} x}$ \qquad equation 1
to prove: $\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y=0$
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
As, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$
$\because y=e^{a \sin ^{-1} x}$
Let $t=\operatorname{asin}^{-1} x=>\frac{d t}{d x}=\frac{a}{\sqrt{\left(1-x^{2}\right)}}\left[\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{\left(1-x^{2}\right)}}\right]$
And $y=e^{t}$
$\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
$\frac{d y}{d x}=e^{t} \frac{a}{\sqrt{\left(1-x^{2}\right)}}=\frac{a e^{a \sin ^{-1} x}}{\sqrt{\left(1-x^{2}\right)}} \ldots \ldots$..equation 2
Again differentiating with respect to x applying product rule:
$\frac{d^{2} y}{d x^{2}}=a e^{a \sin ^{-1} x} \frac{d}{d x}\left(\frac{1}{\sqrt{1-x^{2}}}\right)+\frac{a}{\sqrt{\left(1-x^{2}\right)}} \frac{d}{d x} e^{a \sin ^{-1} x}$
Using chain rule and equation 2 :
$\frac{d^{2} y}{d x^{2}}=-\frac{a e^{a \sin ^{-1} x}}{2\left(1-x^{2}\right) \sqrt{1-x^{2}}}(-2 x)+\frac{a^{2} e^{a \sin ^{-1} x}}{\left(1-x^{2}\right)}\left[\right.$ using $\left.\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{\left(1-x^{2}\right)}}\right]$
$\frac{d^{2} y}{d x^{2}}=\frac{x a e^{a \sin ^{-1} x}}{\left(1-x^{2}\right) \sqrt{1-x^{2}}}+\frac{a^{2} e^{a \sin ^{-1} x}}{\left(1-x^{2}\right)}$
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=a^{2} e^{a \sin ^{-1} x}+\frac{x a e^{a \sin ^{-1} x}}{\sqrt{1-x^{2}}}$

Using equation 1 and equation 2 :
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=a^{2} y+x \frac{d y}{d x}$
$\therefore\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y=0 \ldots \ldots$.proved

25. Question

If $\log y=\tan ^{-1} x$, show that : $\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$.

Answer

Note: y_{2} represents second order derivative i.e. $\frac{d^{2} y}{d x^{2}}$ and $y_{1}=d y / d x$
Given,
$\log y=\tan ^{-1} x$
$\therefore \mathrm{y}=\mathrm{e}^{\tan ^{-1} \mathrm{x}}$ \qquad .equation 1
to prove : $\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$
As $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $\mathrm{dy} / \mathrm{dx}$
$\frac{d y}{d x}=\frac{d}{d x} e^{\tan ^{-1} x}$
Using chain rule, we will differentiate the above expression
Let $\mathrm{t}=\tan ^{-1} \mathrm{x}=>\frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}\left[\frac{\mathrm{~d}}{\mathrm{dx}} \tan ^{-1} \mathrm{x}=\frac{1}{1+\mathrm{x}^{2}}\right]$
And $y=e^{t}$
$\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}$
$\frac{d y}{d x}=e^{t} \frac{1}{1+x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}} \cdots \cdots$ equation 2
Again differentiating with respect to x applying product rule:
$\frac{d^{2} y}{d x^{2}}=e^{\tan ^{-2} x} \frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)+\frac{1}{1+x^{2}} \frac{d}{d x} e^{\tan ^{-1} x}$
Using chain rule we will differentiate the above expression-
$\frac{d^{2} y}{d x^{2}}=\left(\frac{e^{\tan ^{-1} x}}{\left(1+x^{2}\right)^{2}}\right)-\frac{2 x e^{\tan ^{-1} x}}{\left(1+x^{2}\right)^{2}}$
[using equation $2 ; \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1} \& \frac{\mathrm{~d}}{\mathrm{dx}} \tan ^{-1} \mathrm{x}=\frac{1}{1+\mathrm{x}^{2}}$]
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}}-\frac{2 x e^{\tan ^{-1} x}}{1+x^{2}}$
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}}(1-2 x)$

Using equation 2 :
$\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}(1-2 x)$
$\therefore\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0$. \qquad proved

MCQ

1. Question

Write the correct alternative in the following:
If $x=a \cos n t-b \sin n t$, then $\frac{d^{2} x}{d t^{2}}$ is
A. $n^{2} x$
B. $-n^{2} x$
C. -nx
D. $n x$

Answer

Given:
$x=a \cos n t-b \sin n t$
$\frac{\mathrm{dx}}{\mathrm{dt}}=-\mathrm{an} \sin \mathrm{nt}-\mathrm{bn} \cos \mathrm{nt}$
$\frac{d^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\mathrm{an}^{2} \cos n \mathrm{t}+\mathrm{bn}^{2} \sin \mathrm{nt}$
$=-n^{2}(a \cos n t-b \sin n t)$
$=-n^{2} x$

2. Question

Write the correct alternative in the following:
If $x=a t^{2}, y=2 a t$, then $\frac{d^{2} y}{d x^{2}}=$
A. $-\frac{1}{\mathrm{t}^{2}}$
B. $\frac{1}{2 a t^{3}}$
C. $-\frac{1}{t^{3}}$
D. $-\frac{1}{2 \mathrm{at}^{3}}$

Answer

Given:
$y=2 a t, x=a t^{2}$
$\frac{d x}{d t}=2 a t ; \frac{d y}{d t}=2 a$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
$=\frac{1}{\mathrm{t}}$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$
$=\frac{\frac{-1}{\mathrm{t}^{2}}}{2 \mathrm{at}}$
$=\frac{-1}{2 \mathrm{at}^{3}}$

3. Question

Write the correct alternative in the following:
If $y=a x^{n+1}+b x^{-n}$, then $x^{2} \frac{d^{2} y}{d x^{2}}=$
A. $n(n-1) y$
B. $n(n+1) y$
C. ny
D. $n^{2} y$

Answer

Given:
$y=a x^{n+1}+b x^{-n}$
$\frac{d y}{d x}=(n+1) a x^{n}+(-n) b x^{-n-1}$
$\frac{d^{2} y}{d x^{2}}=n(n+1) a x^{n-1}+(-n)(-n-1) b x^{-n-2}$
$\mathrm{x}^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\mathrm{x}^{2}\left\{\mathrm{n}(\mathrm{n}+1) a \mathrm{x}^{\mathrm{n}-1}+(-\mathrm{n})(-\mathrm{n}-1) \mathrm{bx}^{-\mathrm{n}-2}\right\}$
$=\mathrm{n}(\mathrm{n}+1) \mathrm{ax}^{\mathrm{n}-1+2}+\mathrm{n}(\mathrm{n}+1) \mathrm{bx}^{-\mathrm{n}-2+2}$
$=n(n+1)\left[a x^{n+1}+b x^{-n}\right]$
$=n(n+1) y$

4. Question

Write the correct alternative in the following:
$\frac{d^{20}}{d^{20}}(2 \cos x \cos 3 x)=$
A. $2^{20}\left(\cos 2 x-2^{20} \cos 4 x\right)$
B. $2^{20}\left(\cos 2 x+2^{20} \cos 4 x\right)$
C. $2^{20}\left(\sin 2 x-2^{20} \sin 4 x\right)$
D. $2^{20}\left(\sin 2 x-2^{20} \sin 4 x\right)$

Answer

Given:
Let $y=2 \cos x \cos 3 x$
$2 \cos A \cos B=\cos \left(\frac{A+B}{2}\right)+\cos \left(\frac{A-B}{2}\right)$
So $y=\cos 2 x+\cos 4 x$
$\frac{d y}{d x}=-2 \sin 2 x-4 \sin 4 x$
$=(-2)^{1}\left(\sin 2 x+2^{1} \sin 4 x\right)$
$\frac{d^{2} y}{d x^{2}}=-4 \cos 2 x-16 \cos 4 x$
$=(-2)^{2}\left(\cos 2 x+2^{2} \cos 4 x\right)$
$\frac{d^{3} y}{d x^{3}}=8 \sin 2 x+64 \sin 4 x$
$=(-2)^{3}\left(\cos 2 x+2^{3} \cos 4 x\right)$
$\frac{d^{4} y}{d x^{4}}=16 \cos 2 x+256 \cos 4 x$
$=(-2)^{4}\left(\cos 2 x+2^{4} \cos 4 x\right)$
For every odd degree; differential $==(-2)^{n}\left(\cos 2 x+2^{n} \cos 4 x\right) ; n=\{1,3,5 \ldots\}$
For every even degree; differential $=(-2)^{n}\left(\cos 2 x+2^{n} \cos 4 x\right) ; n=\{0,2,4 \ldots\}$
So, $\frac{\mathrm{d}^{20} \mathrm{y}}{\mathrm{dx}^{20}}=(-2)^{20}\left(\cos 2 \mathrm{x}+2^{20} \cos 4 \mathrm{x}\right)$
$=(-2)^{20}\left(\cos 2 x+2^{20} \cos 4 x\right)$;

5. Question

Write the correct alternative in the following:
If $x=t^{2}, y=t^{3}$, then $\frac{d^{2} y}{d x^{2}}=$
A. $\frac{3}{2}$
B. $\frac{3}{4 \mathrm{t}}$
C. $\frac{3}{2 t}$
D. $\frac{3 t}{2}$

Answer

Given:
$\mathrm{x}=\mathrm{t}^{2} ; \mathrm{y}=\mathrm{t}^{3}$
$\frac{d y}{d t}=3 t^{2} ; \frac{d x}{d t}=2 t$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t}{2}$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{3 t}{2}}{2 t}$
$=\frac{3}{4}$

6. Question

Write the correct alternative in the following:
If $y=a+b x^{2}, a, b$ arbitrary constants, then
A. $\frac{d^{2} y}{d x^{2}}=2 x y$
B. $x \frac{d^{2} y}{d x^{2}}=y_{1}$
C. $x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+y=0$
D. $x \frac{d^{2} y}{d x^{2}}=2 x y$

Answer
Given:
$y=a+b x^{2}$
$\frac{d y}{d x}=2 b x$
$\frac{d^{2} y}{d x^{2}}=2 b \neq 2 x y$
$x \frac{d^{2} y}{d x^{2}}=2 b x$
$=\frac{d y}{d x}$
$x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+y=2 b x-2 b x+y$
$=y$

7. Question

Write the correct alternative in the following:

If $f(x)=(\cos x+i \sin x)(\cos 2 x+i \sin 2 x)(\cos 3 x+i \sin 3 x) \ldots(\cos n x+i \sin n x)$ and $f(1)=1$, then $f^{\prime \prime}(1)$ is equal to
A. $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
B. $\left\{\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right\}^{2}$
C. $-\left\{\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right\}^{2}$
D. none of these

Answer

Given:
$f(x)=(\cos x+i \sin x)(\cos 2 x+i \sin 2 x)(\cos 3 x+i \sin 3 x) \ldots(\cos n x+i \sin n x)$
Since $e^{i x}=\cos x+i \sin x$
So, $f(x)=e^{i x} \times e^{i 2 x} \times e^{i 3 x} \times e^{i 4 x} \times \ldots \times e^{i n x}$
$\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{ix}(1+2+3+4+\cdots+n)}$
$=e^{\mathrm{ix} \frac{\mathrm{n}(\mathrm{n}+1)}{2}}$
$f(1)=e^{\frac{\operatorname{in}(n+1)}{2}}$
$f^{\prime}(x)=i x \frac{n(n+1)}{2} e^{i x \frac{n(n+1)}{2}}$
$f^{\prime \prime}(x)=i^{2} x^{2}\left(\frac{n(n+1)}{2}\right)^{2} e^{i x \frac{n(n+1)}{2}}$
$f^{\prime \prime}(x)=-x^{2}\left(\frac{n(n+1)}{2}\right)^{2} e^{i x \frac{n(n+1)}{2}}$
$\mathrm{f}^{\prime \prime}(1)=-1^{2}\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2} \times 1$
$=-\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$

8. Question

Write the correct alternative in the following:
If $y=a \sin m x+b \cos m x$, then $\frac{d^{2} y}{d x^{2}}$ is equal to
A. $-m^{2} y$
B. $m^{2} y$
C. $-m y$
D. $m y$

Answer

Given:
$y=a \sin m x+b \cos m x$
$\frac{d y}{d x}=m a \cos m x-m b \sin m x$
$\frac{d^{2} y}{d x^{2}}=-m^{2} a \sin m x-m^{2} b \cos m x$
$=-\mathrm{m}^{2}[\mathrm{a} \sin \mathrm{mx}+\mathrm{b} \cos \mathrm{mx}]$
$=-\mathrm{m}^{2} \mathrm{y}$

9. Question

Write the correct alternative in the following:
If $f(x)=\frac{\sin ^{-1} x}{\sqrt{\left(1-x^{2}\right)}}$ then $\left(1-x^{2}\right) f^{\prime}(x)-x f(x)=$
A. 1
B. -1
C. 0
D. none of these

Answer

Given:
$y=f(x)=\frac{\sin ^{-1} x}{\sqrt{\left(1-x^{2}\right)}}$
$\frac{d y}{d x}=\frac{1}{\left(\sqrt{\left.\left(1-x^{2}\right)\right)^{2}}\right.}\left\{\frac{1}{\sqrt{\left(1-x^{2}\right)}} \sqrt{\left(1-x^{2}\right)}-\sin ^{-1} x \frac{(-2 x)}{\left.2 \sqrt{\left(1-x^{2}\right)}\right)}\right\}$
$=\frac{1}{\left(\sqrt{\left.\left(1-x^{2}\right)\right)^{2}}\right.}\left\{1+\frac{x \sin ^{-1} x}{\sqrt{\left(1-x^{2}\right)}}\right\}$
$=\frac{1+x y}{\left(1-x^{2}\right)}$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1+\mathrm{xf}(\mathrm{x})}{\left(1-\mathrm{x}^{2}\right)}$
$\left(1-x^{2}\right)^{\prime}(x)=1+x f(x)$
$\left(1-x^{2}\right) f^{\prime}(x)-x f(x)=1$

10. Question

Write the correct alternative in the following:
If $y=\tan ^{-1}\left\{\frac{\log _{e}\left(e / x^{2}\right)}{\log _{e}\left(e x^{2}\right)}\right\}+\tan ^{-1}\left(\frac{3+2 \log _{e} x}{1-6 \log _{e} x}\right)$, then $\frac{d^{2} y}{d x^{2}}=$
A. 2
B. 1
C. 0
D. -1

Answer

Given:
$y=\tan ^{-1}\left\{\frac{\log _{e}\left(\frac{e}{x^{2}}\right)}{\log _{e}\left(e x^{2}\right)}\right\}+\tan ^{-1}\left\{\frac{3+2 \log _{e} x}{1-6 \log _{e} x}\right\}$
$y=\tan ^{-1}\left\{\frac{\log _{e} e-\log _{e} x^{2}}{\log _{e} e+\log _{e} x^{2}}\right\}+\tan ^{-1}\left\{\frac{3 \log _{e} e+2 \log _{e} x}{1-3 \log _{e} e \times 2 \log _{e} x}\right\}$
$y=\tan ^{-1}\left\{\frac{1-\log _{e} x^{2}}{1+\log _{e} x^{2}}\right\}+\tan ^{-1}\left(3 \log _{e} e\right)+\tan ^{-1}\left(2 \log _{e} x\right)$
$y=\tan ^{-1}\left\{\frac{\log _{e} e-2 \log _{e} x}{1+\log _{e} e \times 2 \log _{e} x}\right\}+\tan ^{-1}\left(3 \log _{e} e\right)+\tan ^{-1}\left(2 \log _{e} x\right)$
$y=\tan ^{-1}\left(\log _{e} e\right)-\tan ^{-1}\left(2 \log _{e} x\right)+\tan ^{-1}\left(3 \log _{e} e\right)+\tan ^{-1}\left(2 \log _{e} x\right)$
$y=\tan ^{-1}(1)+\tan ^{-1}(3)$
$y=\tan ^{-1}\left(\frac{1+3}{1-3}\right)=\tan ^{-1}(-2)$
$\frac{d y}{d x}=0$

11. Question

Write the correct alternative in the following:
Let $f(x)$ be a polynomial. Then, the second order derivative of $f\left(e^{x}\right)$ is
A. $f^{\prime \prime}\left(e^{x}\right) e^{2 x}+f^{\prime}\left(e^{x}\right) e^{x}$
B. $f^{\prime \prime}\left(e^{x}\right) e^{x}+f^{\prime}\left(e^{x}\right)$
C. $f^{\prime \prime}\left(e^{x}\right) e^{2 x}+f^{\prime \prime}\left(e^{x}\right) e^{x}$
D. $f^{\prime \prime}\left(e^{x}\right)$

Answer

Given:
$\frac{d}{d x}\left[\frac{d}{d x} f\left(e^{x}\right)\right]=?$
Since, $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
So, $\frac{d}{d x} f\left(e^{x}\right)=f^{\prime}\left(e^{x}\right) e^{x}$
Also, $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
So, $\frac{d}{d x} f^{\prime}\left(e^{x}\right) e^{x}=f^{\prime \prime}(x) e^{x} e^{x}+e^{x} f^{\prime}(x)$
$=f^{\prime \prime}(x) e^{2 x}+e^{x} f^{\prime}(x)$

12. Question

Write the correct alternative in the following:
If $y=a \cos \left(\log _{e} x\right)+b \sin \left(\log _{e} x\right)$, then $x^{2} y_{2}+x y_{1}=$
A. 0
B. y
C. -y
D. none of these

Answer

Given:
$y=a \cos \left(\log _{e} x\right)+b \sin \left(\log _{e} x\right)$
$\frac{d y}{d x}=-a \sin \left(\log _{e} x\right) \frac{1}{x}+b \cos \left(\log _{e} x\right) \frac{1}{x}$
$x y_{1}=-a \sin \left(\log _{e} x\right)+b \cos \left(\log _{e} x\right)$
$\frac{d^{2} y}{d x^{2}}=-a \cos \left(\log _{e} x\right) \frac{1}{x^{2}}+\frac{1}{x^{2}} a \sin \left(\log _{e} x\right)-b \sin \left(\log _{e} x\right) \frac{1}{x^{2}}+b \cos \left(\log _{e} x\right) \frac{1}{x^{2}}$
$x^{2} y_{2}=-a \cos \left(\log _{e} x\right)+a \sin \left(\log _{e} x\right)-b \sin \left(\log _{e} x\right)-b \cos \left(\log _{e} x\right)$
$x^{2} y_{2}+x y_{1}=-a \cos \left(\log _{e} x\right)+a \sin \left(\log _{e} x\right)-b \sin \left(\log _{e} x\right)-b \cos \left(\log _{e} x\right)-a \sin \left(\log _{e} x\right)+$
$=-a \sin \left(\log _{e} x\right)-b \cos \left(\log _{e} x\right)$
$=-y$

13. Question

Write the correct alternative in the following:
If $x=2$ at, $y=a t^{2}$, where a is a constant, then $\frac{d^{2} y}{d x^{2}}$ at $x=\frac{1}{2}$ is
A. $1 / 2 \mathrm{a}$
B. 1
C. 2 a
D. none of these

Answer

Given:
$x=2 a t, y=a t^{2}$
$\frac{d x}{d t}=2 a ; \frac{d y}{d t}=2 a t$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=t$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{1}{2 a}$

14. Question

Write the correct alternative in the following:
If $x=f(t)$ and $y=g(t)$, then $\frac{d^{2} y}{d x^{2}}$ is equal to
A. $\frac{\mathrm{f}^{\prime} \mathrm{g} "-\mathrm{g}^{\prime} \mathrm{f} "}{\left(\mathrm{f}^{\prime}\right)^{3}}$
B. $\frac{\mathrm{f}^{\prime} \mathrm{g}^{\prime \prime}-\mathrm{g}^{\prime} \mathrm{f}^{\prime \prime}}{\left(\mathrm{f}^{\prime}\right)^{2}}$
c. $\frac{\mathrm{g} \text { " }}{\mathrm{f} "}$
D. $\frac{\mathrm{f}^{\prime} \mathrm{g}^{\prime}-\mathrm{g}^{\prime \prime} \mathrm{f}^{\prime}}{\left(\mathrm{g}^{\prime}\right)^{3}}$

Answer

Given:
$x=f(t)$ and $y=g(t)$
$\frac{d x}{d t}=f^{\prime}(\mathrm{t}) ; \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{g}^{\prime}(\mathrm{t})$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{g^{\prime}(t)}{f^{\prime}(t)}$
$\frac{d^{2} y}{{d x^{2}}^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$
$=\frac{1}{f^{\prime}(t)}\left\{\frac{1}{f^{\prime}(\mathrm{t})^{2}}\left(\mathrm{~g}^{\prime \prime}(\mathrm{t}) \mathrm{f}^{\prime}(\mathrm{t})-\mathrm{f}^{\prime \prime}(\mathrm{t}) \mathrm{g}^{\prime}(\mathrm{t})\right)\right\}$
$=\frac{\left(\mathrm{g}^{\prime \prime}(\mathrm{t}) \mathrm{f}^{\prime}(\mathrm{t})-\mathrm{f}^{\prime \prime}(\mathrm{t}) \mathrm{g}^{\prime}(\mathrm{t})\right)}{\left(\mathrm{f}^{\prime}(\mathrm{t})\right)^{3}}$

15. Question

Write the correct alternative in the following:
If $y=\sin \left(m \sin ^{-1} x\right)$, then $\left(1-x^{2}\right) y_{2}-x y_{1}$ is equal to
A. $m^{2} y$
B. $m y$
C. $-m^{2} y$
D. none of these

Answer

Given:
$y=\sin \left(m \sin ^{-1} x\right)$
$\frac{d y}{d x}=m \cos \left(m \sin ^{-1} x\right) \frac{1}{\sqrt{\left(1-x^{2}\right)}}$
$x \frac{d y}{d x}=\cos \left(m \sin ^{-1} x\right) \frac{m x}{\sqrt{\left(1-x^{2}\right)}}$
$\frac{d^{2} y}{d x^{2}}$
$=m\left\{\frac{-m \sin \left(m \sin ^{-1} x\right) \sqrt{1-x^{2}} \frac{1}{\sqrt{1-x^{2}}}-\frac{1}{2 \sqrt{\left(1-x^{2}\right)}(-2 x) \cos \left(m \sin ^{-1} x\right)}}{\left(\sqrt{\left.\left(1-x^{2}\right)\right)^{2}}\right.}\right\}$
$=\frac{m}{\left(1-x^{2}\right)}\left\{-m \sin \left(m \sin ^{-1} x\right)+\frac{x}{\sqrt{\left(1-x^{2}\right.}} \cos \left(m \sin ^{-1} x\right)\right\}$
$\left(1-x^{2}\right) y_{2}=m\left\{-m \sin \left(m \sin ^{-1} x\right)+\frac{x}{\sqrt{\left(1-x^{2}\right.}} \cos \left(m \sin ^{-1} x\right)\right\}$
$=-m^{2} \sin \left(m \sin ^{-1} x\right)+\frac{m x}{\sqrt{\left(1-x^{2}\right.}} \cos \left(m \sin ^{-1} x\right)$
$\left(1-x^{2}\right) y_{2}-x y_{1}$
$=-m^{2} \sin \left(m \sin ^{-1} x\right)+\frac{m x}{\sqrt{\left(1-x^{2}\right.}} \cos \left(m \sin ^{-1} x\right)-\cos \left(m \sin ^{-1} x\right) \frac{m x}{\sqrt{\left(1-x^{2}\right)}}$
$=-\mathrm{m}^{2} \sin \left(\mathrm{~m} \sin ^{-1} \mathrm{x}\right)$
$=-\mathrm{m}^{2} \mathrm{y}$

16. Question

Write the correct alternative in the following:
If $y=\left(\sin ^{-1} x\right)^{2}$, then $\left(1-x^{2}\right) y_{2}$ is equal to
A. $x y_{1}+2$
B. $x y_{1}-2$
C. $-x y_{1}+2$
D. none of these

Answer

Given:
$y=\left(\sin ^{-1} x\right)^{2}$
$\frac{d y}{d x}=2 \sin ^{-1} x \frac{1}{\sqrt{1-x^{2}}}$
$\frac{d^{2} y}{d x^{2}}=2\left\{\left(\frac{1}{\sqrt{1-x^{2}}}\right)^{2}+\sin ^{-1} x \frac{\frac{2 x}{2 \sqrt{1-x^{2}}}}{\left(\sqrt{1-x^{2}}\right)^{2}}\right\}$
$=2\left\{\frac{1}{1-x^{2}}+\sin ^{-1} x \frac{x}{\left(\sqrt{1-x^{2}}\right)^{3 / 2}}\right\}$
$\left(1-x^{2}\right) y_{2}=2\left\{1+\sin ^{-1} x \frac{x}{\sqrt{1-x^{2}}}\right\}$
$=2+x\left\{2 \sin ^{-1} x \frac{1}{\sqrt{1-x^{2}}}\right\}$
$=2+x y_{1}$

17. Question

Write the correct alternative in the following:

If $\mathrm{y}=\mathrm{e}^{\tan \mathrm{x}}$, then $\left(\cos ^{2} \mathrm{x}\right) \mathrm{y}_{2}=$
A. $(1-\sin 2 x) y_{1}$
B. $-(1+\sin 2 x) y_{1}$
C. $(1+\sin 2 x) y_{1}$
D. none of these

Answer

Given:
$y=e^{\tan x}$
$\frac{d y}{d x}=e^{\tan x}(\sec x)^{2}$
$\frac{d^{2} y}{d x^{2}}=e^{\tan x}(\sec x)^{2}(\sec x)^{2}+e^{\tan x} \times 2 \sec x \times \tan x \times \sec x$
$=\mathrm{e}^{\tan \mathrm{x}}(\sec \mathrm{x})^{2}\left[(\sec \mathrm{x})^{2}+2 \tan \mathrm{x}\right]$
$\left(\cos ^{2} \mathrm{x}\right) \mathrm{y}_{2}=\mathrm{e}^{\tan \mathrm{x}}\left[(\sec \mathrm{x})^{2}+2 \tan \mathrm{x}\right]$
$=e^{\tan x}\left[\frac{1+2 \sin x \cos x}{(\cos x)^{2}}\right]$
$=\mathrm{e}^{\tan \mathrm{x}}(\sec \mathrm{x})^{2}[1+2 \sin \mathrm{x} \cos \mathrm{x}]$
$=\mathrm{e}^{\tan \mathrm{x}}(\sec \mathrm{x})^{2}[1+\sin 2 \mathrm{x}]$
$=[1+\sin 2 x] y_{1}$

18. Question

Write the correct alternative in the following:
If $y=\frac{2}{\sqrt{a^{2}-b^{2}}} \tan ^{-1}\left(\frac{a-b}{a+b} \tan \frac{x}{2}\right), a>b>0$, then
A. $y_{1}=\frac{-1}{a+b \cos x}$
B. $y_{2}=\frac{b \sin x}{(a+b \cos x)^{2}}$
C. $y_{1}=\frac{1}{a-b \cos x}$
D. $y_{2}=\frac{-b \sin x}{(a-b \cos x)^{2}}$

Answer

Given:
$y=\frac{2}{\sqrt{\left(a^{2}-b^{2}\right)}} \tan ^{-1}\left(\frac{a-b}{a+b} \tan \frac{x}{2}\right)$
$\frac{d y}{d x}=\frac{2}{\sqrt{\left(a^{2}-b^{2}\right)}}\left(\frac{1}{1+\left(\frac{a-b}{a+b} \tan \frac{x}{2}\right)^{2}}\right)\left(\frac{a-b}{a+b}\right)\left(\sec \frac{x}{2}\right)^{2}$
$=\frac{2}{\sqrt{\left(a^{2}-b^{2}\right)}}\left(\frac{(a+b)^{2}}{(a+b)^{2}+(a-b)^{2}\left(\tan \frac{x}{2}\right)^{2}}\right)\left(\frac{a-b}{a+b}\right)\left(\sec \frac{x}{2}\right)^{2}$
$=\frac{2}{\sqrt{\left(a^{2}-b^{2}\right)}}\left(\frac{(a+b)}{a^{2}\left(1+(\tan x)^{2}\right)+b^{2}\left(1+(\tan x)^{2}\right)+2 a b\left(1-(\tan x)^{2}\right)}\right)(\mathrm{a}$
$-b)\left(\sec \frac{x}{2}\right)^{2}$
$=2\left(\frac{1}{a^{2}\left(1+\left(\tan \frac{x}{2}\right)^{2}\right)+b^{2}\left(1+\left(\tan \frac{x}{2}\right)^{2}\right)+2 a b\left(1-\left(\tan \frac{x}{2}\right)^{2}\right)}\right) \sqrt{\left(a^{2}\right.}$

$$
\left.-b^{2}\right)\left(\sec \frac{x}{2}\right)^{2}
$$

Divide numerator and denominator by $\left(1+\left(\tan \frac{x}{2}\right)^{2}\right)$;
We get:
$=2\left(\frac{1}{a^{2}+b^{2}+2 a b\left(\frac{1-\left(\tan \frac{x}{2}\right)^{2}}{1+\left(\tan \frac{x}{2}\right)^{2}}\right)}\right) \sqrt{\left(a^{2}-b^{2}\right)\left(\sec \frac{x}{2}\right)^{2} \frac{1}{1+\left(\tan \frac{x}{2}\right)^{2}}}$
$=2\left(\frac{1}{a^{2}+b^{2}+2 a b \cos x}\right) \sqrt{\left(a^{2}-b^{2}\right)\left(\sec \frac{x}{2}\right)^{2} \frac{1}{\left(\sec \frac{x}{2}\right)^{2}}}$
$=2\left(\frac{1}{a^{2}+b^{2}+2 a b \cos x}\right) \sqrt{\left(a^{2}-b^{2}\right)}$
$\frac{d^{2} y}{d x^{2}}=2 \sqrt{ }\left(a^{2}-b^{2}\right)\left(\frac{1}{a^{2}+b^{2}+2 a b \cos x}\right)^{2}\{-2 a b \sin x\}$

19. Question

Write the correct alternative in the following:
If $y=\frac{a x+b}{x^{2}+c}$, then $\left(2 x y_{1}+y\right) y_{3}=$
A. $3\left(x y_{2}+y_{1}\right) y_{2}$
B. $3\left(x y_{2}+y_{2}\right) y_{2}$
C. $3\left(x y_{2}+y_{1}\right) y_{1}$
D. none of these

Answer

Given:
$y=\frac{a x+b}{x^{2}+c}$
$\frac{d y}{d x}=\frac{a\left(x^{2}+c\right)-2 x(a x+b)}{\left(x^{2}+c\right)^{2}}$
$=\frac{-a x^{2}-2 b x+a c}{\left(x^{2}+c\right)^{2}}$
$2 x y_{1}=\frac{-a x^{3}-2 b x^{2}+a c x}{\left(x^{2}+c\right)^{2}}$
$\frac{d^{2} y}{d x^{2}}=\frac{(-2 a x-2 b)\left(x^{2}+c\right)^{2}-2(2 x)\left(x^{2}+c\right)\left(-a x^{2}-2 b x+a c\right)}{\left(x^{2}+c\right)^{4}}$

20. Question

Write the correct alternative in the following:
If $y=\log _{e}\left(\frac{x}{a+b x}\right)^{2}$, then $x^{3} y_{2}=$
A. $\left(x y_{1}-y\right)^{2}$
B. $(x+y)^{2}$
C. $\left(\frac{y-x y_{1}}{y_{1}}\right)^{2}$
D. none of these

Answer

Given:
$y=\left(\log _{e}\left(\frac{x}{a+b x}\right)\right)^{2}$
$=2 \log _{e}\left(\frac{x}{a+b x}\right)$
$\frac{d y}{d x}=2\left(\frac{1}{\frac{x}{a+b x}}\right)\left[\frac{a+b x-b x}{(a+b x)^{2}}\right]$
$=2\left(\frac{a+b x}{x}\right)\left[\frac{a}{(a+b x)^{2}}\right]$
$=\frac{2 a}{x(a+b x)}$
$=\frac{2 a}{\left(a x+b x^{2}\right)}$
$x \frac{d y}{d x}=\frac{2 a x}{\left(a x+b x^{2}\right)}$
$\frac{d^{2} y}{d x^{2}}=2 a\left\{\frac{-(a+2 b x)}{\left(a x+b x^{2}\right)^{2}}\right\}$
$=(-a-2 b x) \frac{d y}{d x}$
$x^{3} \frac{d^{2} y}{d x^{2}}=-x^{3}(a+2 b x) \frac{d y}{d x}$

21. Question

Write the correct alternative in the following:
If $x=f(t) \cos t-f^{\prime}(t) \sin t$ and $y=f(t) \sin t+f^{\prime}(t) \cos t$, then $\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=$
A. $f(t)-f^{\prime \prime}(t)$
B. $\left\{f(t)-f^{\prime \prime}(t)\right\}^{2}$
C. $\left\{f(t)+f^{\prime \prime}(t)\right\}^{2}$
D. none of these

Answer

Given:
$x=f(t) \cos t-f^{\prime}(t) \sin t$
$\mathrm{y}=\mathrm{f}(\mathrm{t}) \sin \mathrm{t}+\mathrm{f}^{\prime}(\mathrm{t}) \cos \mathrm{t}$
$\frac{d x}{d t}=f^{\prime}(\mathrm{t}) \cos \mathrm{t}-\mathrm{f}(\mathrm{t}) \sin \mathrm{t}-\mathrm{f}^{\prime \prime}(\mathrm{t}) \sin \mathrm{t}-\mathrm{f}^{\prime}(\mathrm{t}) \cos \mathrm{t}$
$=-f(t) \sin t-f^{\prime \prime}(t) \sin t$
$=-\sin \mathrm{t}\left[\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime \prime}(\mathrm{t})\right]$
$\left(\frac{d x}{d t}\right)^{2}=\left\{-\sin t\left[f(t)+f^{\prime \prime}(t)\right]\right\}^{2}$
$=(\sin \mathrm{t})^{2}\left\{\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime \prime}(\mathrm{t})\right\}^{2}$
$\frac{d y}{d t}=f^{\prime}(t) \sin t+f(t) \cos t+f^{\prime}(t) \cos t-f^{\prime}(t) \sin t$
$=f(t) \cos t+f^{\prime \prime}(t) \cos t$
$=\cos \mathrm{t}\left[\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime \prime}(\mathrm{t})\right]$
$\left(\frac{d y}{d t}\right)^{2}=\left\{\cos t\left[f(t)+f^{\prime}(t)\right]\right\}^{2}$
$=(\cos \mathrm{t})^{2}\left\{\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime \prime}(\mathrm{t})\right\}^{2}$
$\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)^{2}+\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)^{2}=(\sin \mathrm{t})^{2}\left\{\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime \prime}(\mathrm{t})\right\}^{2}+(\cos \mathrm{t})^{2}\left\{\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime \prime}(\mathrm{t})\right\}^{2}$
$=\left\{\mathrm{f}(\mathrm{t})+\mathrm{f}^{\prime \prime}(\mathrm{t})\right\}^{2}$

22. Question

Write the correct alternative in the following:
If $y^{1 / n}+y^{-1 / n}=2 x$, then $\left(x^{2}-1\right) y_{2}+x y_{1}=$
A. $-n^{2} y$
B. $n^{2} y$
C. 0
D. none of these

Answer

Given:
$\mathrm{y}^{1 / \mathrm{n}}+\mathrm{y}^{-1 / \mathrm{n}}=2 \mathrm{x}$
$\frac{1}{n} y^{\frac{1}{n}-1} \frac{d y}{d x}+\frac{-1}{n} y^{\frac{-1}{n}-1} \frac{d y}{d x}=2$
$\frac{1}{n} \frac{d y}{d x}\left\{y^{\frac{1}{n}-1}-y^{\frac{-1}{n}-1}\right\}=2$

23. Question

Write the correct alternative in the following:
If $\frac{d}{d x}\left\{x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+(-1)^{n} a_{n}\right\}$ $e^{x}=x^{n} e^{x}$,

Then the value of $a_{r}, 0<r \leq n$, is equal to
A. $\frac{\mathrm{n}!}{\mathrm{r}!}$
B. $\frac{(\mathrm{n}-\mathrm{r})!}{\mathrm{r}!}$
C. $\frac{n!}{(n-r)!}$
D. none of these

Answer

Given:
$\frac{d}{d x}\left\{\mathrm{x}^{\mathrm{n}}-\mathrm{a}_{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{x}^{\mathrm{n}-2}+\cdots+(-1)^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}\right\} \mathrm{e}^{\mathrm{x}}=\mathrm{x}^{\mathrm{n}} \mathrm{e}^{\mathrm{x}}$
$\frac{d}{d x}\left\{a_{0}(-1)^{0} x^{n}+a_{1}(-1)^{1} x^{n-1}+a_{2}(-1)^{2} x^{n-2}+\cdots+(-1)^{n} a_{n}\right\} e^{x}$
$\frac{d}{d x}(x-1)^{n}$
$(x-1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k}(-1)^{k}$
So, at $k=r$;
$\mathrm{a}_{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{r}}$
Also, $\binom{\mathrm{n}}{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}$
So, $\mathrm{a}_{\mathrm{r}}=\binom{\mathrm{n}}{\mathrm{n}-\mathrm{r}}$

24. Question

Write the correct alternative in the following:
If $y=x^{n-1} \log x$, then $x^{2} y_{2}+(3-2 n) x y_{1}$ is equal to
A. $-(\mathrm{n}-1)^{2} \mathrm{y}$
B. $(\mathrm{n}-1)^{2} \mathrm{y}$
C. $-n^{2} y$
D. $n^{2} y$

Answer

Given:
$\mathrm{y}=\mathrm{x}^{\mathrm{n}-1} \log \mathrm{x}$
$\frac{d y}{d x}=(n-1) x^{n-2} \log x+\frac{1}{x} x^{n-1}$
$=(n-1) x^{n-2} \log x+x^{n-2}$
$=x^{n-2}[(n-1) \log x+1]$
$x y_{1}=x^{n-1}[(n-1) \log x+1]$
$=(\mathrm{n}-1) \mathrm{y}+\mathrm{x}^{\mathrm{n}-1}$
$(3-2 n) x_{1}=(3-2 n)\left[(n-1) y+x^{n-1}\right]$
$=\left(3 n-3-2 n^{2}+2 n\right) y+3 x^{n-1}-2 n x^{n-1}(1)$
$\frac{d^{2} y}{d^{2}}=(n-1)(n-2) x^{n-3} \log x+\frac{1}{x}(n-1) x^{n-2}+(n-2) x^{n-3}$
$=(n-1)(n-2) x^{n-3} \log x+(n-1) x^{n-3}+(n-2) x^{n-3}$
$=x^{n-3}[(n-1)(n-2) \log x+(n-1)+(n-2)]$
$x^{2} y_{2}=x^{n-1}[(n-1)(n-2) \log x+(2 n-3)]$
$=\left(n^{2}-3 n+2\right) y+2 n x^{n-1}-3 x^{n-1}(2)$
$x^{2} y_{2}+(3-2 n) x y_{1}$
$=\left(n^{2}-3 n+2\right) y+2 n x^{n-1}-3 x^{n-1}+\left(3 n-3-2 n^{2}+2 n\right) y+3 x^{n-1}-2 n x^{n-1}$
$=\left(-n^{2}+2 n-1\right) y$
$=-(\mathrm{n}-1)^{2} \mathrm{y}$

25. Question

Write the correct alternative in the following:
If $x y-\log _{e} y=1$ satisfies the equation $x\left(y y_{2}+y_{1}{ }^{2}\right)-y_{2}+\lambda y y_{1}=0$, then $\lambda=$
A. -3
B. 1
C. 3
D. none of these

Answer

Given:
$x y-\log _{e} y=1$
$x y=\log _{e} y+1$
Differentiate w.r.t. ' x ' on both sides;
$y+x \frac{d y}{d x}=\frac{1}{y} \frac{d y}{d x}$
$\frac{d y}{d x}\left(\frac{1}{y}-x\right)=y$
$\frac{d y}{d x}=\frac{y^{2}}{(1-x y)}$
$\left(\frac{d y}{d x}\right)^{2}=\left[\frac{y^{2}}{(1-x y)}\right]^{2}$
$=\frac{y^{4}}{(1-x y)^{2}}$
$\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{d}{d x}\left[\frac{y^{2}}{(1-x y)}\right]$
$=\frac{1}{(1-x y)^{2}}\left\{2 y \frac{d y}{d x}(1-x y)-y^{2}\left(-y+x \frac{d y}{d x}\right)\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{2 y \frac{d y}{d x}(1-x y)-y^{2}\left(-y+x \frac{d y}{d x}\right)\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{2 y \frac{d y}{d x} \frac{y^{2}}{\frac{d y}{d x}}+y^{3}+x y^{2} \frac{d y}{d x}\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{2 y^{3}+y^{3}+x y^{2} \frac{d y}{d x}\right\}$
$=\frac{1}{(1-x y)^{2}}\left\{3 y^{3}+x y^{2} \frac{d y}{d x}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}$
$y \frac{d^{2} y}{d y^{2}}=\frac{y^{3}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}$
$y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}=\frac{y^{3}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}+\frac{y^{4}}{(1-x y)^{2}}$
$=\frac{y^{3}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}+y\right\}$
$=\frac{y^{3}}{(1-x y)^{2}}\left\{4 y+x \frac{d y}{d x}\right\}$
$x\left[y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]=\frac{y^{3} x}{(1-x y)^{2}}\left\{4 y+x \frac{d y}{d x}\right\}$
$x\left[y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]-\frac{d^{2} y}{d y^{2}}=\frac{y^{3} x}{(1-x y)^{2}}\left\{4 y+x \frac{d y}{d x}\right\}-\frac{y^{2}}{(1-x y)^{2}}\left\{3 y+x \frac{d y}{d x}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{x y\left(4 y+x \frac{d y}{d x}\right)-3 y-x \frac{d y}{d x}\right\}$
$=\frac{y^{2}}{(1-x y)^{2}}\left\{4 x y^{2}+x^{2} y \frac{d y}{d x}-3 y-x \frac{d y}{d x}\right\}$

$$
\begin{aligned}
& =\frac{y^{2}}{(1-x y)^{2}}\left\{y(4 x y-3)+x \frac{d y}{d x}(x y-1)\right\} \\
& =\frac{y^{2}}{(1-x y)^{2}}\left\{y(x y+3 x y-3)-x \frac{d y}{d x}(1-x y)\right\} \\
& =\frac{y^{2}}{(1-x y)^{2}}\left\{y(x y-3(1-x y))-x \frac{d y}{d x} \frac{y^{2}}{\frac{d y}{d x}}\right\} \\
& =\frac{y^{2}}{(1-x y)^{2}}\left\{y\left(x y-3 \frac{y^{2}}{\frac{d y}{d x}}\right)-x y^{2}\right\} \\
& =\frac{y^{2}}{(1-x y)^{2}}\left\{x y^{2}-3 \frac{y^{3}}{\frac{d y}{d x}}-x y^{2}\right\} \\
& =-\frac{y^{2}}{(1-x y)^{2}}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}
\end{aligned}
$$

$$
\text { Since }_{x}\left[y \frac{d^{2} y}{d y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]-\frac{d^{2} y}{d y^{2}}+\lambda y \frac{d y}{d x}=0
$$

$$
\text { So, } x\left[y \frac{d^{2} y}{d y y^{2}}+\left(\frac{d y}{d x}\right)^{2}\right]-\frac{d^{2} y}{d y y^{2}}=-\lambda y \frac{d y}{d x}
$$

$$
-\lambda y \frac{d y}{d x}=-\frac{y^{2}}{(1-x y)^{2}}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}
$$

$$
-\lambda y \frac{y^{2}}{(1-x y)}=-\frac{y^{2}}{(1-x y)^{2}}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}
$$

$$
\lambda y=\frac{1}{(1-x y)}\left\{3 \frac{y^{3}}{\frac{d y}{d x}}\right\}
$$

$$
\lambda=\frac{3 y^{2}}{(1-x y) \frac{d y}{d x}}
$$

$$
\lambda=\frac{3 \frac{d y}{d x}}{\frac{d y}{d x}}
$$

$$
\lambda=3
$$

26. Question

Write the correct alternative in the following:
If $y^{2}=a x^{2}+b x+c$, then $y^{3} \frac{d^{2} y}{d x^{2}}$ is
A. a constant
B. a function of x only
C. a function of y only
D. a function of x and y

Answer

Given:
$y^{2}=a x^{2}+b x+c$
$y=\sqrt{ }\left(a x^{2}+b x+c\right)$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{\left(a x^{2}+b x+c\right)}} \times(2 a x+b)$
$\frac{d^{2} y}{d x^{2}}$
$=\frac{1}{2}\left\{\frac{\left(2 a \times \sqrt{a x^{2}+b x+c}\right)-\left((2 a x+b) \times \frac{1}{2 \sqrt{\left(a x^{2}+b x+c\right)} \times(2 a x+b)}\right)}{\left(\sqrt{\left.\left(a x^{2}+b x+c\right)\right)^{2}}\right.}\right\}$
$=\frac{1}{2}\left\{\frac{\frac{4 a\left(a x^{2}+b x+c\right)-(2 a x+b)^{2}}{2 \sqrt{\left(a x^{2}+b x+c\right.}}}{\left(\sqrt{\left.\left(a x^{2}+b x+c\right)\right)^{2}}\right.}\right\}$
$=\frac{1}{2}\left\{\frac{4 a^{2} x^{2}+4 a b x+4 a c-4 a^{2} x^{2}-b^{2}-4 a b x}{\left(\sqrt{\left.\left(a x^{2}+b x+c\right)\right)^{2} \times 2 \sqrt{(} a x^{2}+b x+c}\right.}\right\}$
$=\frac{1}{4}\left\{\frac{4 a c-b^{2}}{\left.\left(\sqrt{\left(a x^{2}+b x\right.}+c\right)\right)^{\frac{3}{2}}}\right\}$
$y^{3} \frac{d^{2} y}{d x^{2}}=\frac{1}{4}\left\{\frac{4 a c-b^{2}}{\left(\sqrt{\left.\left(a x^{2}+b x+c\right)\right)^{3}}\right.}\right\} \times\left(\sqrt{\left.\left(a x^{2}+b x+c\right)\right)^{3}}\right.$
$=\frac{4 a c-b^{2}}{4}$
Hence, y is a constant.

Very short answer

1. Question

If $y=a x^{n+1}+b x^{-n}$ and $x^{2} \frac{d^{2} y}{d x^{2}}=\lambda y$, then write the value of λ.

Answer

Given:

$y=a x^{n+1}+b x^{-n}$
$\frac{d y}{d x}=(n+1) a x^{n}+(-n) b x^{-n-1}$
$\frac{d^{2} y}{d x^{2}}=n(n+1) a x^{n-1}+(-n)(-n-1) b x^{-n-2}$
$x^{2} \frac{d^{2} y}{d x^{2}}=x^{2}\left\{n(n+1) a x^{n-1}+(-n)(-n-1) b x^{-n-2}\right\}=\lambda y$
$\lambda y=n(n+1) a x^{n-1+2}+n(n+1) b x^{-n-2+2}$
$\lambda y=n(n+1)\left[a x^{\wedge}(n+1)+b x^{\wedge}(-n)\right]$
$\lambda y=n(n+1)$
$\lambda=n(n+1)$

2. Question

If $x=a \cos n t-b \sin n t$ and $\frac{d^{2} y}{d t^{2}}=\lambda x$, then find the value of λ.

Answer

Given:
$y=a \cos n t-b \sin n t$
$\frac{d y}{d t}=-a n \sin n t-b n \cos n t$
$\frac{d^{2} y}{d t^{2}}=-a^{2} \cos n t+b n^{2} \sin n t=\lambda y$
$\lambda y=-n^{2}(a \cos n t-b \sin n t)$
$\lambda y=-n^{2} y$
$\lambda=-n^{2}$

3. Question

If $x=t^{2}$ and $y=t^{3}$, where a is a constant, then find $\frac{d^{2} y}{d x^{2}}$ at $x=\frac{1}{2}$.

Answer

Given:
$x=t^{2} ; y=t^{3}$
$\frac{d y}{d t}=3 t^{2} ; \frac{d x}{d t}=2 t$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t}{2}$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{3 t}{2}}{2 t}$
$=\frac{3}{4}$

4. Question

If $x=2 a t, y=a t^{2}$, where a is a constant, then find $\frac{d^{2} y}{d x^{2}}$ at $x=\frac{1}{2}$.

Answer

Given:
$x=2 a t, y=a t^{2}$
$\frac{d x}{d t}=2 a ; \frac{d y}{d t}=2 a t$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
$=\mathrm{t}$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$
$=\frac{1}{2 \mathrm{a}}$
5. Question

If $x=f(t)$ and $y=g(t)$, then write the value of $\frac{d^{2} y}{d x^{2}}$.

Answer

Given:
$x=f(t)$ and $y=g(t)$
$\frac{d x}{d t}=f^{\prime}(\mathrm{t}) ; \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{g}^{\prime}(\mathrm{t})$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{g^{\prime}(t)}{f^{\prime}(t)}$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$
$=\frac{1}{f^{\prime}(\mathrm{t})}\left\{\frac{1}{f^{\prime}(\mathrm{t})^{2}}\left(\mathrm{~g}^{\prime \prime}(\mathrm{t}) \mathrm{f}^{\prime}(\mathrm{t})-\mathrm{f}^{\prime \prime}(\mathrm{t}) \mathrm{g}^{\prime}(\mathrm{t})\right)\right\}$
$=\frac{\left(\mathrm{g}^{\prime \prime}(\mathrm{t}) \mathrm{f}^{\prime}(\mathrm{t})-\mathrm{f}^{\prime \prime}(\mathrm{t}) \mathrm{g}^{\prime}(\mathrm{t})\right)}{\left(\mathrm{f}^{\prime}(\mathrm{t})\right)^{3}}$

6. Question

If $y=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \ldots$ to ∞, then write $\frac{d^{2} y}{d x^{2}}$ in terms of y.

Answer

Given:
$y=1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots \infty$
$\frac{d y}{d x}=0-1+\frac{2 x}{2!}-\frac{3 x^{2}}{3!}-\frac{4 x^{3}}{4!}+\cdots \infty$
$\frac{d^{2} y}{d x^{2}}=0-0+1-\frac{2 x}{2!}+\frac{3 x^{2}}{3!}-\frac{4 x^{3}}{4!}+\cdots \infty$
$=1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots \infty$
$\frac{d^{2} y}{d x^{2}}=y$
7. Question

If $y=x+e^{x}$, find $\frac{d^{2} x}{d y^{2}}$.

Answer

Given:
$y=x+e^{x}$
$\frac{d^{2} x}{d^{2} y}=\frac{1}{\frac{d^{2} y}{d x^{2}}}$
$\frac{d y}{d x}=1+e^{x}$
$\frac{d^{2} y}{d x^{2}}=e^{x}$
$\frac{d^{2} x}{d^{2} y}=\frac{1}{e^{x}}$
$=e^{-x}$
8. Question

If $y=\left|x-x^{2}\right|$, then find $\frac{d^{2} y}{d x^{2}}$.

Answer

Given:
$y=\left|x-x^{2}\right|$
$y=\left\{\begin{array}{l}x-x^{2} ; x \geq 0 \\ x^{2}-x ; x \leq 0\end{array}\right.$
$\frac{d y}{d x}=\left\{\begin{array}{l}1-2 x ; x \geq 0 \\ 2 x-1 ; x \leq 0\end{array}\right.$
$\frac{d^{2} y}{d x^{2}}=\left\{\begin{array}{c}-2 ; x \geq 0 \\ 2 ; x \leq 0\end{array}\right.$
9. Question

If $y=\left|\log _{e} x\right|$, find $\frac{d^{2} y}{d x^{2}}$.

Answer

Given:
$y=\left|\log _{e} x\right| \forall x>0$
$y=\log _{e} x$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{x}=x^{-1} \\
& \frac{d^{2} y}{d x^{2}}=(-1) x^{-2}
\end{aligned}
$$

