11. Constructions

Exercise 11.1

1. Question

Determine a point which divides a line segment of length 12 cm internally in the ratio $2: 3$. Also, justify your construction.

Answer

We need to divide this line segment $A B$ of length 12 cm internally in the ratio $2: 3$.

Step 1: Draw a line segment $A C$ of arbitrary length and at an any angle to $A B$ such that $\angle C A B$ is acute.

Step 2: We plot $(2+3=) 5$ points $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$.

Step 3: We join points A_{5} and B.

Step 4: We draw line segment $A_{2} P$ such that $A_{2} P \| A_{5} B$ and P is the point of intersection of this line segment with $A B$.

Point P divides $A B$ in the ratio $2: 3$.
Justification -
In $\triangle A A_{2} P$ and $\triangle A A_{5} B$,
i. $\angle A$ is common.
ii. $\angle A A_{2} P=\angle A A_{5} B$ (corresponding angles $\because A_{2} P \| A_{5} B$)

Hence, $\triangle{A A_{2} P \sim \triangle A A_{5} B}$
So, ratio of lengths of corresponding sides must be equal.
$\Rightarrow \frac{\mathrm{AA}_{2}}{\mathrm{AP}}=\frac{\mathrm{AA}_{5}}{\mathrm{AB}}$
Let $A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=x$
So, the previous relation can be re - written as-
$\frac{2 x}{A P}=\frac{5 x}{A P+P B}$
$\Rightarrow 2(A P+P B)=5 A P$
$\Rightarrow 2 \mathrm{~PB}=3 \mathrm{AP}$
$\Rightarrow A P / P B=2 / 3$, or, $A P: P B=2: 3$

2. Question

Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.

Answer

We need to divide this line segment $A B$ of length 9 cm internally in the ratio $4: 3$.

Step 1: Draw a line segment $A C$ of arbitrary length and at an any angle to $A B$ such that $\angle C A B$ is acute.

Step 2: We plot $(4+3=) 7$ points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$, and A_{7} such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$ $=A_{5} A_{6}=A_{6} A_{7}$

Step 3: We join points A_{7} and B.

Step 4: We draw line segment $A_{4} P$ such that $A_{4} P \| A_{7} B$ and P is the point of intersection of this line segment with $A B$.

Point P divides $A B$ in the ratio $4: 3$.
Lustification -
In $\triangle A A_{4} P$ and $\triangle A A_{7} B$,
iii. $\angle A$ is common.
iv. $\angle A A_{4} P=\angle A A_{7} B$ (corresponding angles $\because A_{4} P| | A_{7} B$)

Hence, $\triangle A_{A} A_{4} \sim \Delta A_{7} B$
So, ratio of lengths of corresponding sides must be equal.
$\Rightarrow \frac{\mathrm{AA}_{4}}{\mathrm{AP}}=\frac{\mathrm{AA}_{7}}{\mathrm{AB}}$
Let $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}=A_{6} A_{7}=x$
So, the previous relation can be re - written as -
$\frac{4 \mathrm{x}}{\mathrm{AP}}=\frac{7 \mathrm{x}}{\mathrm{AP}+\mathrm{PB}}$
$\Rightarrow 4(A P+P B)=7 A P$
$\Rightarrow 4 \mathrm{~PB}=3 \mathrm{AP}$
$\Rightarrow A P / P B=4 / 3$, or, $A P: P B=4: 3$

3. Question

Divide a line segment of length 14 cm internally in the ratio $2: 5$. Also, justify your construction.

Answer

We need to divide this line segment $A B$ of length 14 cm internally in the ratio $2: 5$.

Step 1: Draw a line segment $A C$ of arbitrary length and at an any angle to $A B$ such that $\angle C A B$ is acute.

Step 2: We plot $(2+5=) 7$ points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$, and A_{7} such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$ $=A_{5} A_{6}=A_{6} A_{7}$

Step 3: We join points A_{7} and B.

Step 4: We draw line segment $A_{2} P$ such that $A_{2} P \| A_{7} B$ and P is the point of intersection of this line segment with $A B$.

Point P divides $A B$ in the ratio $2: 5$.

Justification -
In $\triangle A A_{2} P$ and $\triangle A A_{7} B$,
v. $\angle A$ is common.
vi. $\angle A A_{2} P=\angle A A_{7} B$ (corresponding angles $\because A_{2} P| | A_{7} B$)

Hence, $\triangle A_{A} P \sim \sim A A_{7} B$
So, ratio of lengths of corresponding sides must be equal.
$\Rightarrow \frac{\mathrm{AA}_{2}}{\mathrm{AP}}=\frac{\mathrm{AA}_{7}}{\mathrm{AB}}$
Let $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}=A_{6} A_{7}=x$
So, the previous relation can be re - written as -
$\frac{2 x}{A P}=\frac{7 x}{A P+P B}$
$\Rightarrow 2(A P+P B)=7 A P$
$\Rightarrow 2 \mathrm{~PB}=5 \mathrm{AP}$
$\Rightarrow A P / P B=2 / 5$, or, $A P: P B=2: 5$

Exercise 11.2

1. Question

Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are (2/3) of the corresponding sides of it.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=6 \mathrm{~cm}$.

2) Taking B as the center and radius 4 cm , draw an arc. Now taking C as the center and radius 5 cm draw another arc, intersecting the previous arc at A. Join $A B$ and $A C$.

3) Draw any line segment $B D$, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting BD at E . Taking E as the center and radius BE , draw an arc, intersecting BD at F. Taking F as the center and radius BE, draw an arc, intersecting BD at G. Join CG.

4) Taking G as the center and any radius, draw an arc., intersecting BD and CG at H and I respectively. Taking F as the center and radius GH, draw an arc., intersecting BD at J. Taking J as the center and radius HI , draw an arc, intersecting previous arc at K. Join and extend FK, intersecting BC at L.

5) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at N and O respectively. Taking L as the center and radius CN, draw an arc., intersecting BC at P. Taking P as the center and radius NO, draw an arc, intersecting previous arc at Q. Join and extend LQ, intersecting AB at M.

6) $\triangle B L M$ is the required triangle.

2. Question

Construct a triangle similar to a given $\triangle A B C$ such that each of its sides is $(5 / 7)^{\text {th }}$ of the corresponding sides of $\triangle A B C$. It is given that $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $\angle A B C=50^{\circ}$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=6 \mathrm{~cm}$.

2) Using a protractor, draw $\angle C B D=50^{\circ}$. Taking B as the center and radius 5 cm draw an arc, intersecting $B D$ at A. Join AC.

3) Draw any line segment $B E$, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting BE at F. Taking F as the center and radius $B F$, draw an arc, intersecting BE at G. Similarly, repeat the process 5 more times to get points $\mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K}$ and L . Join CL.

4) Taking L as the center and any radius, draw an arc., intersecting $B E$ and $C L$ at M and N respectively. Taking J as the center and radius LM, draw an arc., intersecting BE at O. Taking O as the center and radius MN, draw an arc, intersecting previous arc at P. Join and extend JP, intersecting BC at Q.

5) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at S and T respectively. Taking Q as the center and radius CS, draw an arc., intersecting BC at U . Taking U as the center and radius ST, draw an arc, intersecting previous arc at V. Join and extend QV, intersecting AB at R.

6) $\triangle B Q R$ is the required triangle.

3. Question

Construct a triangle similar to a given $\triangle A B C$ such that each of its sides is $(2 / 3)^{d}$ of the corresponding sides of $\triangle A B C$. It is given that $B C=6 \mathrm{~cm}, \angle B=50^{\circ}$ and $\angle C=600$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=6 \mathrm{~cm}$.

2) Using a protractor, draw $\angle C B D=50^{\circ}$ and $\angle B C E=60^{\circ}$. $B D$ and $C E$ intersect at point A.

3) Draw any line segment $B F$, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting BF at G. Taking G as the center and radius BG, draw an arc, intersecting BF at H . Taking H as the center and radius BG , draw an arc, intersecting BF at I . Join Cl .

4) Taking I as the center and any radius, draw an arc., intersecting BF and Cl at J and K respectively. Taking H as the center and radius IJ , draw an arc., intersecting BF at L . Taking L as the center and radius JK, draw an arc, intersecting previous arc at M. Join and extend $H M$, intersecting $B C$ at N.

5) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at P and Q respectively. Taking N as the center and radius CP, draw an arc., intersecting BC at R. Taking R as the center and radius $P Q$, draw an arc, intersecting previous arc at S. Join and extend NS, intersecting $A B$ at O.

6) $\triangle \mathrm{BNO}$ is the required triangle.

4. Question

Draw a $\triangle A B C$ in which $B C=6 \mathrm{~cm}, A B=4 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$. Draw a triangle similar to $\triangle A B C$ with its sides equal to $(3 / 4)^{t h}$ of the corresponding sides of $\triangle A B C$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=6 \mathrm{~cm}$.

2) Taking B as the center and radius 4 cm , draw an arc. Now taking C as the center and radius 5 cm draw another arc, intersecting the previous arc at A. Join $A B$ and $A C$.

3) Draw any line segment $B D$, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting $B D$ at E. Taking E as the center and radius $B E$, draw an arc,
intersecting BD at F. Similarly, repeat the process 2 more times to get points G and H. Join $C H$.

4) Taking H as the center and any radius, draw an arc., intersecting BD and CH at I and J respectively. Taking G as the center and radius HI , draw an arc., intersecting BD at K . Taking K as the center and radius IJ , draw an arc, intersecting previous arc at L. Join and extend HL, intersecting BC at M.

5) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at O and P respectively. Taking M as the center and radius CO , draw an arc., intersecting BC at Q . Taking Q as the center and radius $O P$, draw an arc, intersecting previous arc at R. Join and extend $M R$, intersecting $A B$ at N.

6) $\triangle B M N$ is the required triangle.

5. Question

Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $7 / 5$ of the corresponding sides of the first triangle.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=6 \mathrm{~cm}$.

2) Taking B as the center and radius 5 cm , draw an arc. Now taking C as the center and radius 7 cm draw another arc, intersecting the previous arc at A, Join $A B$ and $A C$.

3) Draw any line segment $B D$, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting BD at E . Taking E as the center and radius BE , draw an arc, intersecting $B D$ at F. Similarly, repeat the process 5 more times to get points $\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}$ and K . Join Cl .

4) Taking I as the center and any radius, draw an arc., intersecting BD and Cl at L and M respectively. Taking K as the center and radius IL, draw an arc., intersecting BD at N. Taking N as the center and radius LM, draw an arc, intersecting previous arc at O. Join and extend KO, intersecting extended BC at P.

5) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at R and S respectively. Taking P as the center and radius CR, draw an arc., intersecting BP at T. Taking T as the center and radius RS, draw an arc, intersecting previous arc at U. Join and extend PU, intersecting extended $A B$ at Q.

6) $\triangle \mathrm{BPQ}$ is the required triangle.

6. Question

Draw a right triangle $A B C$ in which $A C=A B=4.5 \mathrm{~cm}$ and $\angle A=900^{\circ}$. Draw a triangle similar to $\triangle A B C$ with its sides equal to $(5 / 4)$ th of the corresponding sides of $\triangle A B C$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $A B=4.5 \mathrm{~cm}$.

2) Using a protractor, draw $\angle \mathrm{BAD}=90^{\circ}$. Taking A as the center and radius 4.5 cm , draw an arc, intersecting $A D$ at C. Join $B C$.

3) Draw any line segment $A E$, making an acute angle with $A B$ and opposite to the vertex C. Taking A as the center and any radius, draw an arc, intersecting $A E$ at F. Taking F as the center and radius $A F$, draw an arc, intersecting AE at G. Similarly, repeat the process 3 more times to get points H, I and J. Join BI .

4) Taking I as the center and any radius, draw an arc., intersecting $A E$ and $B I$ at K and L respectively. Taking J as the center and radius IK, draw an arc., intersecting AE at M . Taking M as the center and radius KL, draw an arc, intersecting previous arc at N. Join and extend JN, intersecting extended AB at O.

5) Taking B as the center and any radius, draw an arc., intersecting $B A$ and $B C$ at Q and R respectively. Taking O as the center and radius BQ, draw an arc., intersecting AO at S . Taking S as the center and radius $Q R$, draw an arc, intersecting preyious arc at T. Join and extend $O T$, intersecting $A D$ at P.

6) $\triangle A O P$ is the required triangle.

7. Question

Draw a right triangle in which the sides (other than hypotenuse) are of lengths 5 cm and 4 cm . Then construct another triangle whose sides are 5/3 times the corresponding sides of the given triangle.

Answer

The steps involved in the required construction are:

1) Draw a line segment $A B=5 \mathrm{~cm}$.

2) Using a protractor, draw $\angle B A D=90^{\circ}$. Taking A as the center and radius 4 cm , draw an arc, intersecting $A D$ at C. Join BC.

3) Draw any line segment $A E$, making an acute angle with $A B$ and opposite to the vertex C. Taking A as the center and any radius, draw an arc, intersecting AE at F. Taking F as the center and radius AF, draw an arc, intersecting AE at G. Similarly, repeat the process 3 more times to get points H, I and J. Join BH .

4) Taking H as the center and any radius, draw an arc., intersecting AE and BH at K and L respectively. Taking J as the center and radius HK, draw an arc, intersecting AE at M. Taking M as the center and radius KL , draw an arc, intersecting previous arc at N . Join and extend JN, intersecting extended AB at O .

5) Taking B as the center and any radius, draw an arc., intersecting $B A$ and $B C$ at Q and R respectively. Taking O as the center and radius BQ , draw an arc., intersecting AO at S . Taking S as the center and radius $Q R$, draw an arc, intersecting previous arc at T. Join and extend $O T$, intersecting $A D$ at P.

6) $\triangle A O P$ is the required triangle.

8. Question

Construct a $\triangle A B C$ in which $A B=5 \mathrm{~cm} . \angle B=60^{\circ}$ altitude $C D=3 \mathrm{~cm}$. Construct a $\triangle A Q R$ similar to $\triangle A B C$ such that side of $\triangle A Q R$ is 1.5 times that of the corresponding sides of $\triangle A C B$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $A B=5 \mathrm{~cm}$. Using a protractor, draw $\angle A B E=60^{\circ}$. Keeping A as the center, draw a circle of any radius, intersecting extended $A B$ at F and G.

2) Keeping F as the center and any radius draw a circular arc. Now, Keeping G as the center and same radius as before, draw another arc, intersecting previous arc at H. Join and extend AH. Keeping A as the center and radius 3 cm , draw an arc, intersecting extended AH at I .

3) Keeping I as the center, draw a circle of any radius, intersecting extended AH at J and K. Keeping J as the center and any radius draw a circular arc. Now, Keeping K as the center and same radius as before, draw another arc, intersecting previous arc at L. Join and extend IL, intersecting BE at C. Join AC.

4) Draw any line segment $A M$, making an acute angle with $A B$ and opposite to the vertex C. Taking A as the center and any radius, draw an arc, intersecting $A M$ at N. Taking N as the center and radius AN, draw an arc, intersecting $A M$ at O. Taking O as the center and radius $A N$, draw an arc, intersecting $A M$ at P. Join BO.

5) Taking O as the center and any radius, draw an arc., intersecting $A M$ and $B O$ at Q and R respectively. Taking P as the center and radius OQ, draw an arc, intersecting $A M$ at S. Taking S as the center and radius $Q R$, draw an arc, intersecting previous arc at T. Join and extend PT, intersecting extended $A B$ at U.

6) Taking B as the center and any radius, draw an arc., intersecting $B A$ and $B C$ at W and X respectively. Taking U as the center and radius BW, draw an arc., intersecting AU at Y. Taking Y as the center and radius WX, draw an arc, intersecting previous arc at Z. Join and extend UZ, intersecting extended AC at V.

7) $\Delta A U V$ is the required triangle.

9. Question

Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $3 / 2$ times the corresponding sides of the isosceles triangle.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=8 \mathrm{~cm}$.

2) Taking B as the center and any radius greater $\operatorname{than} \frac{B C}{2}$, draw two arcs on each side of $B C$. Taking C as the center and same radius, draw 2 more arcs, intersecting previous arcs at D and E. $D E$, intersecting $B C$ at F. Taking F as the center and radius 4 cm , draw an arc, intersecting FD at A. Join $A B$ and $A C$.

3) Draw any line segment BG, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting BG at H . Taking H as the center and radius BH , draw an arc, intersecting BG at I. Taking I as the center and radius BH, draw an arc, intersecting BG at J. Join CI.

4) Taking I as the center and any radius, draw an arc., intersecting BG and Cl at K and L respectively. Taking J as the center and radius $I K$, draw an arc, intersecting BG at M. Taking M as the center and radius $K L$, draw an arc, intersecting previous arc at N . Join and extend JN, intersecting extended BC at O .

5) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at Q and R respectively. Taking O as the center and radius CQ, draw an arc., intersecting $B O$ at S. Taking S as the center and radius $Q R$, draw an arc, intersecting previous arc at T. Join and extend OT, intersecting extended $A B$ at P.

6) $\triangle \mathrm{BOP}$ is the required triangle.

10. Question

Draw a $\triangle A B C$ with side $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then, construct a triangle whose sides are $(3 / 4)^{t h}$ of the corresponding sides of the $\triangle A B C$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=6 \mathrm{~cm}$.

2) Using a protractor, draw $\angle C B D=60^{\circ}$. Taking B as the center and radius 5 cm draw an arc, intersecting $B D$ at A. Join AC.

3) Draw any line segment $B E$, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting $B E$ at F. Taking F as the center and radius $B F$, draw an arc, intersecting BE at G . Similarly, repeat the process 2 more times to get points H and I . Join CI .

4)Taking I as the center and any radius, draw an arc., intersecting BD and Cl at J and K respectively. Taking H as the center and radius I , draw an arc., intersecting BD at L. Taking L as the center and radius JK, draw an arc, intersecting previous arc at M . Join and extend HM , intersecting BC at N .

4) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at P and Q respectively. Taking N as the center and radius CP, draw an arc., intersecting $B C$ at R. Taking R as the center and radius PQ , draw an arc, intersecting previous arc at S . Join and extend NS, intersecting AB at O .

5) $\triangle \mathrm{BNO}$ is the required triangle.

11. Question

Construct a triangle similar to $\triangle A B C$ in which $A B=4.6 \mathrm{~cm}, B C=5.1 \mathrm{~cm}, \angle A=600$ with scale factor $4: 5$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $A B=4.6 \mathrm{~cm}$.

2) Using a protractor, draw $\angle B A D=60^{\circ}$. Taking B as the center and radius 5.1 cm , draw an arc, intersecting $A D$ at C. Join BC.

3) Draw any line segment $A E$, making an acute angle with $A B$ and opposite to the vertex C. Taking A as the center and any radius, draw an arc, intersecting AE at F . Taking F as the center and radius AF, draw an arc, intersecting AE at G. Similarly, repeat the process 3 more times to get points H, I and J. Join BJ .

4) Taking J as the center and any radius, draw an arc., intersecting $A E$ and $B J$ at K and L respectively. Taking I as the center and radius JK, draw an arc., intersecting AE at M. Taking M as the center and radius KL, draw an arc, intersecting previous arc at N . Join and extend IN , intersecting AB at O .

5) Taking B as the center and any radius, draw an arc., intersecting $B A$ and $B C$ at Q and R respectively. Taking O as the center and radius BQ, draw an arc., intersecting AO at S . Taking S as the center and radius QR , draw an arc, intersecting previous arc at T . Join and extend OT , intersecting AC at P .

6) $\triangle A O P$ is the required triangle.

12. Question

Construct a triangle similar to a given $\Delta X y z$ with its sides equal to $(3 / 4)^{\text {th }}$ of the corresponding sides of $\Delta X y z$. Write the steps of construction.

Answer

The steps involved in the required construction are:

1) Draw any random triangle $\triangle X Y Z$.

2) Draw any line segment $Y D$, making an acute angle with $Y Z$ and opposite to the vertex X. Taking Y as the center and any radius, draw an arc, intersecting YD at E. Taking E as the center and radius YE, draw an arc, intersecting YD at F. Similarly, repeat the process 2 more times to get points G and H. Join ZH.

3) Taking H as the center and any radius, draw an arc., intersecting YD and ZH at I and J respectively. Taking G as the center and radius HI , draw an arc., intersecting YD at K. Taking K as the center and radius IJ, draw an arc, intersecting previous arc at L . Join and extend HL , intersecting YZ at M .

4) Taking Z as the center and any radius, draw an arc., intersecting $Y Z$ and $Z A$ at O and P respectively. Taking M as the center and radius ZO , draw an arc., intersecting YZ at Q . Taking Q as the center and radius OP, draw an arc, intersecting previous arc at R. Join and extend $M R$, intersecting $X Y$ at N.

5) $\triangle Y M N$ is the required triangle.

13. Question

Draw a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm . Then construct another triangle whose sides are 3/4 times the corresponding sides of the first triangle.

Answer

The steps involved in the required construction are:

1) Draw a line segment $B C=6 \mathrm{~cm}$.

2) Using a protractor, draw $\angle C B D=90^{\circ}$. Taking B as the center and radius 8 cm draw an arc, intersecting BD at A. Join AC.

3) Draw any line segment $B E$, making an acute angle with $B C$ and opposite to the vertex A. Taking B as the center and any radius, draw an arc, intersecting BE at F . Taking F as the center and radius BF , draw an arc, intersecting BE at G . Similarly, repeat the process 2 more times to get points H and I . Join Cl .

4)Taking I as the center and any radius, draw an arc., intersecting BD and Cl at J and K respectively. Taking H as the center and radius IJ, draw an arc., intersecting BD at L. Taking L as the center and radius JK, draw an arc, intersecting previous arc at M . Join and extend HM , intersecting BC at N .

4) Taking C as the center and any radius, draw an arc., intersecting $B C$ and $C A$ at P and Q respectively. Taking N as the center and radius CP , draw an arc., intersecting BC at R . Taking R as the center and radius $P Q$, draw an arc, intersecting previous arc at S. Join and extend NS, intersecting $A B$ at O.

5) $\triangle \mathrm{BNO}$ is the required triangle.

14. Question

Construct a triangle with sides $5 \mathrm{~cm}, 5.5 \mathrm{~cm}$ and 6.5 cm . Now construct another triangle, whose sides are 3/5 times the corresponding sides of the given triangle.

Answer

Step 1. At first drawn a base line BC of length 5.5 cm with the help of scale.

Step 2. Taking B as center draw an arc of radius 5 cm with the help of compass. Similarly taking C as center draw a arc of radius 6.5 cm with the help of compass.

Join $A B$ and $A C$ thus completing the triangle $A B C$.

Step 3. A ray $B X$ is drawn making an acute angle with $B C$ opposite to vertex A. Five points $B_{1}, B_{2}, B_{3}, B_{4}$, and B_{5} at equal distance is marked on $B X$.

Step 4. B_{3} is joined with C to form $B_{3} C$ as 3 point is smaller. $B_{5} C_{1}$ is drawn parallel to $B_{3} C$ as 5 point is greater.

Step 5: $\mathrm{C}_{1} \mathrm{~A}_{1}$ is drawn parallel to CA .

Thus, $A_{1} B C_{1}$ is the required triangle.

Justification:

Since the scale factor is $\frac{3}{5}$,
We need to prove,
$\frac{\mathrm{A}_{1} \mathrm{~B}}{\mathrm{AB}}=\frac{\mathrm{A}_{1} \mathrm{C}_{1}}{\mathrm{AC}}=\frac{\mathrm{BC}_{1}}{\mathrm{BC}}=\frac{3}{5}$
By construction,
$\frac{\mathrm{BC}_{1}}{\mathrm{BC}}=\frac{\mathrm{BB}_{5}}{\mathrm{BB}_{3}}=\frac{3}{5} \ldots$
Also, $\mathrm{A}_{1} \mathrm{C}_{1}$ is parallel to AC .
So, this will make same angle with $B C$.
$\therefore \angle \mathrm{A}_{1} \mathrm{C}_{1} B=\angle A C B$
Now,
In $\triangle A_{1} B C_{1}$ and $\triangle A B C$
$\angle B=\angle B$ (common)
$\angle A_{1} C_{1} B=\angle A C B$ (from 2)
$\triangle A_{1} B C_{1} \sim \triangle A B C$
Since corresponding sides of similar triangles are in same ratio.
$\frac{\mathrm{A}_{1} \mathrm{~B}}{\mathrm{AB}}=\frac{\mathrm{A}_{1} \mathrm{C}_{1}}{\mathrm{AC}}=\frac{\mathrm{BC}_{1}}{\mathrm{BC}}$
From (1)
$\frac{\mathrm{A}_{1} \mathrm{~B}}{\mathrm{AB}}=\frac{\mathrm{A}_{1} \mathrm{C}_{1}}{\mathrm{AC}}=\frac{\mathrm{BC}_{1}}{\mathrm{BC}}=\frac{3}{5}$
Hence construction is justified.

15. Question

Construct a triangle $P Q R$ with sides $Q R=7 \mathrm{~cm}, P Q=6 \mathrm{~cm}$ and $\angle P Q R=600$. Then construct another triangle whose sides are $3 / 5$ of the corresponding sides of $\triangle P Q R$.

Answer

The steps involved in the required construction are:

1) Draw a line segment $P Q=6 \mathrm{~cm}$.

2) Using a protractor, draw $\angle P Q A=60^{\circ}$. Taking Q as the center and radius 7 cm , draw an arc, intersecting QA at R. Join PR.

3) Draw any line segment $Q B$, making an acute angle with $P Q$ and opposite to the vertex R. Taking Q as the center and any radius, draw an arc, intersecting QB at C . Taking C as the center and radius QC , draw an arc, intersecting QB at D. Similarly, repeat the process 3 more times to get points E, F and G . Join PG.

4) Taking G as the center and any radius, draw an arc., intersecting $Q B$ and $P G$ at H and I respectively. Taking E as the center and radius GH , draw an arc, intersecting QB at J. Taking J as the center and radius HI , draw an arc, intersecting previous arc at K. Join and extend EK, intersecting extended PQ at L.

5) Taking P as the center and any radius, draw an arc., intersecting $P Q$ and $P R$ at N and O respectively. Taking L as the center and radius PN, draw an arc., intersecting PQ at S . Taking S as the center and radius NO, draw an arc, intersecting previous arc at T. Join and extend LT, intersecting QR at M.

6) $\triangle Q L M$ is the required triangle.

Exercise 11.3

1. Question

Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Answer

Step1: Draw circle of radius 6 cm with center A, mark point C at 10 cm from center

Step 2: find perpendicular bisector of AC

Step3: Take this point as center and draw a circle through A and C

Step4:Mark the point where this circle intersects our circle and draw tangents through C

Length of tangents $=8 \mathrm{~cm}$
AE is perpendicular to CE (tangent and radius relation)
In $\triangle A C E$
AC becomes hypotenuse
$A C^{2}=C E^{2}+A E^{2}$
$10^{2}=C E^{2}+6^{2}$
$C E^{2}=100-36$
$C E^{2}=64$
$C E=8 \mathrm{~cm}$

2. Question

Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .

Answer

Step 1: We construct a circle with centre O and radius 3 cm .

Step 2: We draw a diameter through O and extend it from both ends to points P and Q such that $\mathrm{OP}=\mathrm{OQ}=$ 7 cm .

Step 3: We construct perpendicular bisectors $A B$ and $C D$ of segments $O P$ and $O Q$ respectively. E and F are the corresponding intersection points.

Step 4: We take OE as radius and construct arcs taking E as centre to cut the circle at points K and L. Similarly, we take OF as radius and construct arcs taking F as centre to cut the circle at points M and N .

Step 5: We join points P and K, P and L, Q and M, and Q and N to get the tangents $P K, P L, Q M, Q N$ from points

P and Q to the circle.

3. Question

Draw a line segment AB of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.

Answer

Step 1: We construct line segment $A B$ of length 8 cm .

Step 2: Taking A as centre, we construct a circle of radius 4 cm and taking B as centre, we construct a circle of radius 3 cm .

Step 3: We construct perpendicular bisector CD of line segment $A B$. They intersect at point E .

Step 4: Taking AE as radius and E as centre, we construct arcs to cut circle A at points K and L. Similarly, Taking BE as radius and E as centre, we construct arcs to cut circle B at points M and N .

Step 5: We join points A and M, A and N, B and K, B and L to get tangents $A M$ and $A N$ from point A to circle B, and tangents $B K$ and $B L$ from point B to circle A.

4. Question

Draw a pair of tangents to a circle of radius 4.5 cm , which are inclined to each other at an angle of 45°.

Answer

Step 1: We construct a circle with radius 4.5 cm , centred at 0 .

Step 2: We construct an angle of 135° at centre O, such that $\angle A O C=135^{\circ}$, where C is another point on the circle.

Step 3: We construct perpendiculars to $O C$ and $O A$ at points C and A respectively.

Step 4: We extend the perpendiculars to meet at point D , and we get tangents AD and CD to the circle, enclosing 45° between them.

5. Question

Draw two tangents to a circle of radius 3.5 cm from a point P at a distance of 6.2 cm from its centre.

Answer

Step 1: Construct a circle of radius 3.5 cm , centred at a point O .

Step 2: Construct line segment $O P$, such that point P is at a distance of 6.2 cm from O .

Step 3: Construct perpendicular bisector $A B$ of line segment $O P$. Point E is where they intersect.

Step 4: Taking OE as the radius and centre at E, we draw arcs to cut the circle at points C and D.

Step 5: We join points P and C, and P and D to get tangents $P C$ and $P D$ to the circle.

6. Question

Draw a right triangle ABC in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle B=90^{\circ}$. Draw BD perpendicular from B on AC
and draw a circle passing through the points B, C and D. Construct tangents from A to this circle.

Answer

Step 1: Construct line segment $A B$ of length 6 cm . Then construct perpendicular $B C$ of length 8 cm . Finally join points A and C to complete the triangle.

Step 2: Construct a perpendicular from point B onto $A C$. Point D is where this perpendicular meets $A C$.

Step 3: Construct perpendicular bisector of line segment BC, which intersects it at pt. O.

Step 4: Taking centre at O and radius as $O B$, we construct a circle. It passes through points C and D too.

Step 5: We join points A and O.

Step 6: We construct the perpendicular bisector of AO, which intersects it at point E.

Step 7: Taking centre at E and radius as OE , we draw an arc cutting the circle at F . (We cut it at one point only because $A B$ is already a tangent to the circle)

Step 8: We join points A and F, thus obtaining tangents $A B$ and $A F$ to the circle.

