10. Congruent Triangles

Exercise 10.1

1. Question

In Fig. 10.22, the sides $B A$ and $C A$ have been produced such that $B A=A D$ and $C A=A E$. Prove that segment $D E \| B C$.

Fig. 10.22

Answer

Given,
The sides BA and CA have been produced, such that:
$B A=A D$
And, $C A=A E$
We have to prove that,
DE || BC
Consider $\triangle B A C$ and $\triangle D A E$, we have
$B A=A D$ and $C A=A E$ (Given)
$\angle B A C=\angle D A E$ (Vertically opposite angle)
So, by SAS congruence rule we have:
$\triangle B A C \cong \triangle D A E$
Therefore, $\mathrm{BC}=\mathrm{DE}$ and
$\angle D E A=\angle B C A$,
$\angle E D A=\angle C B A$ (By c.p.c.t)
Now, DE and BC are two lines intersected by a transversal DB such that,
$\angle D E A=\angle B C A$,
i.e., Alternate angles are equal

Therefore, DE || BC

2. Question

In a $\triangle P Q R$, if $P Q=Q R$ and L, M and N are the mid points of the sides $P Q, Q R$ and $R P$ respectively, Prove that $L N=M N$.

Answer

Given that in $\triangle P Q R$,
$P Q=Q R$
And, L, M, N are the mid points of the sides $P Q, Q R$ and RP respectively.
We have to prove that,
$\mathrm{LN}=\mathrm{MN}$
Here, we can observe that PQR is an isosceles triangle
$P Q=Q R$
And, $\angle \mathrm{QPR}=\angle \mathrm{QRP}(\mathrm{i})$
And also, L and M are the mid points of $P Q$ and $Q R$ respectively
$P L=L Q=\frac{P Q}{2}$
$\mathrm{QM}=\mathrm{MR}=\frac{Q R}{2}$
And, $\mathrm{PQ}=\mathrm{QR}$
$\mathrm{PL}=\mathrm{LQ}=\mathrm{QM}=\mathrm{MR}=\frac{P Q}{2}=\frac{Q R}{2}(\mathrm{ii})$
Now, in $\triangle L P N$ and $\triangle M R N$
$L P=M R($ From ii)
$\angle L P N=\angle M R N($ From $i)$
$P N=N R(N$ is the mid-point of $P R)$
Hence, By SAS theorem
$\triangle L P N \cong \triangle M R N$
Therefore, $\mathrm{LN}=\mathrm{MN}$ (By c.p.c.t)

3. Question

In Fig. 10.23, $P Q R S$ is a square and $S R T$ is an equilateral triangle. Prove that

Fig. 10.23
(i) $P T=Q T$ (ii) $\angle T Q R=15^{\circ}$

Answer

Given,
PQRS is a square and SRT is a equilateral triangle
To prove: (i) $\mathrm{PT}=\mathrm{QT}$
(ii) $\angle T Q R=15^{\circ}$

Proof: $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$ (As PQRS is a square, all sides will be equal) (i)
And, $\angle \mathrm{SPQ}=\angle \mathrm{PQR}=\angle \mathrm{QRS}=\angle \mathrm{RSP}=90^{\circ}$
And also,
SRT is an equilateral triangle
$S R=R T=T S$ (ii)
And, $\angle T S R=\angle S R T=\angle R T S=60^{\circ}$
From (i) and (ii)
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SP}=\mathrm{SR}=\mathrm{RT}=\mathrm{TS}$ (iii)
$\angle T S P=\angle T S R+\angle R S P$
$=60^{\circ}+90^{\circ}=150^{\circ}$
$\angle T R Q=\angle T R S+\angle S R Q$
$=60^{\circ}+90^{\circ}=150^{\circ}$
Therefore, $\angle \mathrm{TSR}=\angle \mathrm{TRQ}=150^{\circ}$ (iv)
Now, in $\triangle T S P$ and $\triangle T R Q$, we have
$T S=T R($ From iii)
$\angle T S P=\angle T R Q($ From iv)
$S P=R Q($ From $i i i)$
Therefore, By SAS theorem,
$\Delta T S P \cong \triangle T R Q$
$\mathrm{PT}=\mathrm{QT}$ (BY c.p.c.t)
In $\triangle T Q R$
$\mathrm{QR}=\mathrm{TR}($ From iii $)$
Hence, $\triangle T Q R$ is an isosceles triangle.
Therefore, $\angle \mathrm{QTR}=\angle \mathrm{TQR}$ (Angles opposite to equal sides)
Now,
Sum of angles in a triangle is 180°
$\angle \mathrm{QTR}+\angle \mathrm{TQR}+\angle \mathrm{TRQ}=180^{\circ}$
$2 \angle \mathrm{TQR}+150^{\circ}=180^{\circ}$ (From iv)
$2 \angle \mathrm{TQR}=30^{\circ}$
$\angle T Q R=15^{\circ}$
Hence, proved

4. Question

Prove that the medians of an equilateral triangle are equal.

Answer

To prove: The medians of an equilateral triangle are equal.
Median $=$ The line joining the vertex and mid-points of opposite sides.
Proof: Let $\triangle A B C$ be an equilateral triangle
$A D, E F$ and $C F$ are its medians.
Let,
$A B=A C=B C=x$
In $\triangle B F C$ and $\triangle C E B$, we have
$A B=A C$ (Sides of equilateral triangle)
$\frac{1}{2} A B=\frac{1}{2} A C$
$B F=C E$
$\angle A B C=\angle A C B$ (Angles of equilateral triangle)
$B C=B C$ (Common)
Hence, by SAS theorem, we have
$\triangle B F C \cong \triangle C E B$
$B E=C F($ By c.p.c.t)
Similarly, $A B=B E$
Therefore, $A D=B E=C F$
Hence, proved

5. Question

In a $\triangle A B C$, if $\angle A=120^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Answer

Given,
$\angle A=120^{\circ}$
$A B=A C$
We have to find $\angle B$ and $\angle C$:
We can observe that $\triangle A B C$ is an isosceles triangle since $A B=A C$
$\angle B=\angle C$ (Angle opposite to equal sides are equal) [i]
We know that,
Sum of angles in a triangle is equal to 180°
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+\angle B+\angle B=180^{\circ}$
$\angle A+2 \angle B=180^{\circ}$
$120^{\circ}+2 \angle B=180^{\circ}$
$2 \angle B=180^{\circ}-120^{\circ}$
$2 \angle B=60^{\circ}$
$\angle B=30^{\circ}$
$\angle B=\angle C=30^{\circ}$
6. Question

In a $\triangle A B C$, if $A B=B C 120^{\circ}$ and $\angle B=70^{\circ}$, find $\angle A$.

Answer

Consider $\triangle A B C$,
We have,
$\angle B=70^{\circ}$
And, $A B=A C$
Therefore, $\triangle A B C$ is an isosceles triangle.
$\angle B=\angle C$ (Angle opposite to equal sides are equal)
$\angle B=\angle C=70^{\circ}$
And $\angle A+\angle B+\angle C=180^{\circ}$ (Angles of triangle)
$\angle A+70^{\circ}+70^{\circ}=180^{\circ}$
$\angle A=40^{\circ}$

7. Question

The vertical angle of an isosceles triangle is 100°. Find its base angles.

Answer

Consider an isosceles triangle $A B C$,
Such that:
$A B=A C$
Given,
Vertical $\angle \mathrm{A}$ is 100°
To find: Base angle
Since, $\triangle A B C$ is isosceles,
$\angle B=\angle C$ (Angle equal to opposite sides)
And,
$\angle A+\angle B+\angle C=180^{\circ}$ (Angles of triangle)
$100^{\circ}+\angle B+\angle B=180^{\circ}$
$\angle B=40^{\circ}$
$\angle B=\angle C=40^{\circ}$

8. Question

In Fig. 10.24, $A B=A C$ and $\angle A C D=105^{\circ}$, find $\angle B A C$.

Fig. 10.24

Answer

Given,
$A B=A C$
$\angle A C D=105^{\circ}$
Since, $\angle B C D=180^{\circ}$ (Straight angle)
$\angle B C A+\angle A C D=180^{\circ}$
$\angle B C A+105^{\circ}=180^{\circ}$
$\angle B C A=75^{\circ}$ (i)
Now,
$\triangle A B C$ is an isosceles triangle
$\angle A B C=\angle A C B$ (Angle opposite to equal sides)
From (i), we have
$\angle A C B=75^{\circ}$
$\angle A B C=\angle A C B=75^{\circ}$
Sum of interior angle of triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A=180^{\circ}-75^{\circ}-75^{\circ}$
$=30^{\circ}$
Therefore, $\angle B A C=30^{\circ}$

9. Question

Find the measure of each exterior angle of an equilateral triangle.

Answer

To Find: Measure of each exterior angle of an equilateral triangle
Consider an equilateral triangle ABC.
We know that, for an equilateral triangle

$$
A B=A C=C A
$$

And, $\angle A B C=\angle B C A=\angle C A B=\frac{180}{3}$
$=60^{\circ}(\mathrm{i})$
Now, Extend side BC to D,
$C A$ to E and $A B$ to F
Here,
$B C D$ is a straight line segment
$\angle B C D=$ Straight line segment $=180^{\circ}$
$\angle B C A+\angle A C D=180^{\circ}$
$60^{\circ}+\angle A C D=180^{\circ}($ From i $)$
$\angle A C D=120^{\circ}$
Similarly, we can find $\angle E A B$ and $\angle F B C$ also as 120° because $A B C$ is an equilateral triangle.
Therefore, $\angle A C D=\angle E A B=\angle F B C=120^{\circ}$
Hence, the measure of each exterior angle of an equilateral triangle is 120°

10. Question

If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.

Answer

To prove: the exterior angles formed are equal to each other
i.e., $\angle A D B=\angle A C E$

Proof: Let $A B C$ be an isosceles triangle
Where $B C$ is the base of the triangle and $A B$ and $A C$ are its equal sides.
$\angle A B C=\angle A C B$
$\angle B=\angle C$ (Angle opposite to equal sides)
Now,
$\angle A D B+\angle A B C=180^{\circ}$
$\angle A C B+\angle A C E=180^{\circ}$
$\angle A D B=180^{\circ}-\angle B$
And
$\angle A C E=180^{\circ}-\angle C$
$\angle A D B=180^{\circ}-\angle B$
And
$\angle A C E=180^{\circ}-\angle B$
$\angle A D B=\angle A C E$

Hence, proved
11. Question

In Fig. 10.25, $A B=A C$ and $D B=D C$, find the ratio $\angle A B D: \angle A C D$.

Fig. 10.25

Answer

Consider the figure,
Given,
$A B=A C$
$D B=D C$
To find: Ratio $\angle A B D=\angle A C D$
Now, $\triangle A B C$ and $\triangle D B C$ are isosceles triangles
Since, $A B=A C$
And,
$D B=D C$
Therefore, $\angle A B C=\angle A C B$ and,
$\angle D B C=\angle D C B$ (Angle opposite equal sides)
Now, consider $\angle A B D: \angle A C D$
($\angle \mathrm{ABC}-\angle D B C):(\angle A C B-\angle D C B)$
$(\angle A B C-\angle D B C):(\angle A B C-\angle D B C)[$ Since, $\angle A B C=\angle A C B$ and $\angle D B C=\angle D C B]$
1: 1
Therefore, $\angle A B D: \angle A C D=1: 1$

12. Question

Determine the measure of each of the equal angles of a right angled isosceles triangle.
OR
$A B C$ is a right-angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Answer

Given,
$A B C$ is a right-angled triangle
$\angle A=90^{\circ}$
And,
$A B=A C$
To find: $\angle B$ and $\angle C$
Since, $A B=A C$

Therefore, $\angle B=\angle C$
And, Sum of angles in a triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$90^{\circ}+2 \angle B=180^{\circ}$
$2 \angle B=90^{\circ}$
$\angle B=45^{\circ}$
Hence, the measure of each angle of the equal angles of a right angle isosceles triangle is 45°.

13. Question

$A B$ is a line segment. P and Q are points on opposite sides of $A B$ such that each of them is equidistant from the points A and B (See Fig. 10.26). Show that the line $P Q$ is perpendicular bisector of $A B$.

Fig. 10.26

Answer

Consider the figure,
We have $A B$ is a line segment
P, Q are the points on opposite sides on $A B$
Such that,
$A P=B P(i)$
$A Q=B Q(i i)$
To prove: PQ is perpendicular bisector of $A B$
Proof: Now, consider $\triangle P A Q$ and $\triangle P B Q$,
$A P=B P($ From $i)$
$A Q=B Q($ From $i i)$
$P Q=P Q$ (Common)
Therefore, By SSS theorem
$\triangle P A Q \cong \triangle P B Q$ (iii)
Now, we can observe that $\triangle A P B$ and $\triangle A B Q$ are isosceles triangles [From (i) and (ii)]
$\angle P A B=\angle P B A$
And,
$\angle \mathrm{QAB}=\angle \mathrm{QBA}$

Consider, $\triangle P A C$ and $\triangle P B C$

C is the point of intersection of $A B$ and $P Q$
$\mathrm{PA}=\mathrm{PB}[$ From (i) $]$
$\angle A P C=\angle B P C[$ From (iii)]
$P C=P C$ (Common)
By SAS theorem,
$\triangle P A C \cong \triangle P B C$
$A C=C B$
And, $\angle P C A=\angle P C B$ (By c.p.c.t) (iv)
And also,
ACB is line segment
$\angle A C P+\angle B C P=180^{\circ}$
But, $\angle A C P=\angle P C B$
$\angle A C P=\angle P C B=90^{\circ}(v)$
We have,
$A C=C B$
C is the mid-point of $A B$
From (iv) and (v), we conclude that
$P C$ is the perpendicular bisector of $A B$
Since, C is the point on line $P Q$, we can say that $P Q$ is the perpendicular bisector of $A B$.

Exercise 10.2

1. Question

In Fig. 10.40, it is given that $\mathrm{RT}=\mathrm{TS}, \angle 1=2 \angle 2$ and $\angle 4=2 \angle 3$. Prove that $\triangle R B T \cong \triangle S A T$.

Fig. 10.40

Answer

In the figure, given that:
$\mathrm{RT}=\mathrm{TS}(\mathrm{i})$
$\angle 1=2 \angle 2$ (ii)
And,
$\angle 4=2 \angle 3$ (iii)
To prove: $\triangle R B T \cong \triangle S A T$

Let the point of intersection of RB and SA be denoted by 0 .
Since, RB and SA intersect at 0 .
$\angle A O R=\angle B O S$ (Vertically opposite angle)
$\angle 1=\angle 4$
$2 \angle 2=2 \angle 3$ [From (ii) and (iii)]
$\angle 2=\angle 3$ (iv)
Now, we have in $\Delta T R S$
$R T=T S$
$\Delta T R S$ is an isosceles triangle
Therefore, \angle TRS $=\angle T S I(v)$
But, we have
$\angle T R S=\angle T R B+\angle 2(v i)$
$\angle T S R=\angle T S A+\angle 3$ (vii)
Putting (vi) and (vii) in (v), we get
$\angle T R B+\angle 2=\angle T S A+\angle 3$
$\angle T R B=\angle T S A[F r o m$ (iv)]
Now, in $\triangle R B T$ and $\triangle S A T$
$\mathrm{RT}=\mathrm{ST}[$ From (i)
$\angle T R B=\angle T S A[F r o m(i v)$
$\angle \mathrm{RTB}=\angle \mathrm{STA}$ (Common angle)
By ASA theorem,
$\triangle R B T \cong \triangle S A T$

2. Question

Two lines $A B$ and $C D$ intersect at O such that $B C$ is equal and parallel to $A D$. Prove that the lines $A B$ and $C D$ bisect at O.

Answer

Given that,
Lines $A B$ and CD intersect at O such that:
$B C \| A D$
And, $B C=A D$ (i)
To prove: $A B$ and $C D$ bisect at O
Proof: In $\triangle A O D$ and $\triangle B O C$
$A D=B C[$ From (i) $]$
$\angle O B C=\angle O A D(A D \| B C$ and $A B$ is transversal)
$\angle O C B=\angle O D A(A D \| B C$ and $C D$ is transversal)
Therefore, by ASA theorem:
$\triangle A O D \cong \triangle B O C$
$O A=O B$ (By c.p.c.t)
And,
$O D=O C$ (By c.p.c.t)
Hence, $A B$ and $C D$ bisect each other at O.

3. Question

$B D$ and $C E$ are bisectors of $\angle B$ and $\angle C$ of an isosceles $\triangle A B C$ with $A B=B C$. Prove that $B D=C E$.

Answer

Given,
In isosceles $\triangle A B C$,
$B D$ and $C E$ are bisectors of $\angle B$ and $\angle C$
And,
$A B=A C$
To prove: $\mathrm{BD}=\mathrm{CE}$
Proof: In $\triangle B E C$ and $\triangle C D B$, we have
$\angle B=\angle C$ (Angles opposite to equal sides)
$B C=B C$ (Common)
$\angle B C E=\angle C B D$ (Since, $\left.\angle C=\angle B \frac{1}{2} \angle C=\frac{1}{2} \angle B \angle B C E=\angle C B D\right)$
By ASA theorem, we have
$\triangle B E C \cong \triangle C D B$
$E C=B D($ By c.p.c.t)
Hence, proved

Exercise 10.3

1. Question

In two triangles one side an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Answer

Given that in two right angle triangles one side and acute angle of one are equal to the corresponding side and angle of the other.

We have to prove that the triangles are congruent.
Let us consider two right angle triangles. Such that,
$\angle B=\angle E=90^{\circ}(\mathrm{i})$
$\mathrm{AB}=\mathrm{DE}$ (ii)
$\angle C=\angle F$ (iii)
Now, observe the two triangles ABC and DEF
$\angle C=\angle F$ (iv)
$\angle B=\angle E[$ From (i) $]$
$\mathrm{AB}=\mathrm{DE}[$ From (ii)]
So, by AAS theorem, we have
$\triangle A B C \cong \triangle D E F$

Therefore, the two triangles are congruent

Hence, proved

2. Question

If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.

Answer

Given that the bisector of exterior vertical angle of a triangle is parallel to the base and we have to prove that the triangle is isosceles.

Let, $A B C$ be a triangle such that $A D$ is the angular bisector of exterior vertical angle EAC and $A D \| B C$
Let, $\angle E A D=1$
$\angle D A C=2$
$\angle A B C=3$
$\angle A C B=4$
We have,
$1=2$ (Therefore, $A D$ is the bisector of $\angle E A C$)
$1=3$ (Corresponding angles)
And,
$2=4$ (Alternate angles)
$3=4=A B=A C$
Since, in $\triangle A B C$, two sides $A B$ and $A C$ are equal we can say that $\triangle A B C$ is isosceles.

3. Question

In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

Answer

Let $\triangle A B C$ be isosceles
Such that,
$A B=B C$
$\angle B=\angle C$
Given, that vertex angle A is twice the sum of the base angles B and C.
i.e., $\angle A=2(\angle B+\angle C)$
$\angle A=2(\angle B+\angle B)$
$\angle A=2(2 \angle B)$
$\angle A=4 \angle B$
Now,
We know that the sum of all angles of triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$4 \angle B+\angle B+\angle B=180^{\circ}$ (Therefore, $\angle A=4 \angle B, \angle C=\angle B$)
$6 \angle B=180^{\circ}$
$\angle B=\frac{180}{6}$
$=30^{\circ}$
Since, $\angle B=\angle C=30^{\circ}$
And, $\angle A=4 \angle B$
$=4 * 30^{\circ}=120^{\circ}$
Therefore, the angles of the triangle are $120^{\circ}, 30^{\circ}, 30^{\circ}$.

4. Question

$P Q R$ is a triangle in which $P Q=P R$ and S is any point on the side $P Q$. Through S, a line is drawn parallel to $Q R$ and intersecting $P R$ at T. Prove that $P S=P T$.

Answer

Given that $P Q R$ is a triangle
Such that,
$P Q=P R$
And, S is any point on side PQ and $\mathrm{ST} \| \mathrm{QR}$
We have to prove PS = PT
Since,
$P Q=P R$
$P Q R$ is isosceles
$\angle Q=\angle R$
Or, $\angle P Q R=\angle P R Q$
Now,
$\angle P S T=\angle P Q R$
And,
$\angle P T S=\angle P R Q$ (Corresponding angles as $S T \| Q R$)
Since,
$\angle P Q R=\angle P R Q$
$\angle P S T=P T S$
Now, in $\triangle P S T$
$\angle P S T=\angle P T S$
Therefore, $\triangle P S T$ is an isosceles triangle
$P S=P T$

5. Question

In a $\triangle A B C$, it is given that $A B=A C$ and the bisectors of $\angle B$ and $\angle C$ intersect at O. If M is a point on $B O$ produced, prove that $\angle M O C=\angle A B C$.

Answer

Given that in $\triangle A B C$,
$A B=A C$ and the bisectors of $\angle B$ and $\angle C$ intersect at O and M is a point on $B O$ produced.
We have to prove $\angle M O C=\angle A B C$
Since,
$A B=A C$
$\triangle A B C$ is isosceles
$\angle B=\angle C$
Or,
$\angle A B C=\angle A C B$
Now,
$B O$ and $C O$ are bisectors of $\angle A B C$ and $\angle A C B$ respectively.
$\angle \mathrm{ABO}=\angle \mathrm{OBC}=\angle \mathrm{ACO}=\angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{ABC}=\frac{1}{2} \angle \mathrm{ACB}$ (i)
We have, in $\triangle O B C$
$\angle O C B+\angle O B C+\angle B O C=180^{\circ}(\mathrm{ii})$
And also,
$\angle B O C+\angle C O M=180^{\circ}$ (iii) [Straight angle]
Equating (ii) and (iii), we get
$\angle O C B+\angle O B C+\angle B O C=\angle B O C+\angle C O M$
$\angle O B C+\angle O B C=\angle M O C$
$2 \angle O B C=\angle M O C$
$2\left(\frac{1}{2} \angle A B C\right)=\angle M O C[$ From (i) $]$
$\angle A B C=\angle M O C$
Therefore, $\angle M O C=\angle A B C$

6. Question

P is a point on the bisector of an angle $\angle A B C$. If the line through P parallel to $A B$ meets $B C$ at Q, prove that the triangle $B P Q$ is isosceles.

Answer

Given that P is the point on the bisector of an angle $\angle A B C$, and $P Q|\mid A B$
We have to prove that BPQ is isosceles
Since,
$B P$ is the bisector of $\angle A B C=\angle A B P=\angle P B C$ (i)
Now,
$P Q \| A B$
$\angle B P Q=\angle A B P$ (ii) [Alternate angles]
From (i) and (ii), we get
$\angle B P Q=\angle P B C$
Or,
$\angle B P Q=\angle P B Q$
Now, in $\triangle B P Q$
$\angle B P Q=\angle P B Q$
$\triangle B P Q$ is an isosceles triangle
Hence, proved

7. Question

Prove that each angle of an equilateral triangle is 60°.

Answer

Given to prove that each angle of the equilateral triangle is 60°
Let us consider an equilateral triangle $A B C$
Such that,
$A B=B C=C A$
Now,
$A B=B C$
$\angle A=\angle C[i]$ (Opposite angles to equal sides are equal)
$B C=A C$
$\angle B=\angle A$ [ii[(Opposite angles to equal sides are equal)
From [i] and [ii], we get
$\angle A=\angle B=\angle C[i i i]$
We know that,
Sum of all angles of triangles $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+\angle A+\angle A=180^{\circ}$
$3 \angle A=180^{\circ}$
$\angle A=\frac{180}{3}$
$=60^{\circ}$
Therefore, $\angle A=\angle B=\angle C=60^{\circ}$
Hence, each angle of an equilateral triangle is 60°.

8. Question

Angles A, B, C of a triangle $A B C$ are equal to each other. Prove that $\triangle A B C$ is equilateral.
Answer

Given that A, B, C of a triangle $A B C$ are equal to each other.
We have to prove that, $\triangle A B C$ is equilateral.
We have,
$\angle A=\angle B=\angle C$
Now,
$\angle A=\angle B$
$B C=A C$ (Opposite sides to equal angles are equal)
$\angle B=\angle C$
$A C=A B$ (Opposite sides to equal angles are equal)
From the above, we get
$A B=B C=A C$
Therefore, $\triangle A B C$ is an equilateral triangle.
Hence, proved

9. Question

$A B C$ is a triangle in which $\angle B=2 \angle C$. D is a point on $B C$ such that $A D$ bisects $\angle B A C$ and $A B=C D$. Prove that $\angle B A C=72^{\circ}$.

Answer

Given that, in $\triangle A B C$,
$\angle B=2 \angle C$ and,
D is a mid-point on $B C$ such that $A D$ bisects $\angle B A C$ and $A B=C D$.
We have to prove that, $\angle B A C=72^{\circ}$
Now draw the angular bisector of $\angle A B C$, which meets $A C$ in P
Join PD
Let, $\angle A C B=y$
$\angle B=\angle A B C=2 \angle C=2 y$
Also, $\angle B A D=\angle D A C=x$
$\angle B A C=2 x$ (Therefore, $A D$ is the bisector of $\angle B A C$)
Now, in $\triangle B P C$
$\angle C B P=y$ (Therefore, $B P$ is the bisector of $\angle A B C$)
$\angle P C B=y$
$\angle C B P=\angle P C B=y$
Therefore, $\mathrm{PC}=\mathrm{BP}$

Consider $\triangle A B P$ and $\triangle D C P$, we have
$\angle A B P=\angle D C P=y$
$A B=D C$ (Given)
$\mathrm{PC}=\mathrm{BP}$ (From above)
So, by SAS theorem, we have
$\triangle A B P \cong \triangle D C P$
Now,
$\angle B A P=\angle C D P$
And, $A P=D P(B y$ c.p.c.t)
$\angle B A P=\angle C D P=2 x$
Now, in $\triangle A B D$
$\angle A B D+\angle B A D+\angle A D B=180^{\circ}$
$\angle A D B+\angle A D C=180^{\circ}$ (Straight angle)
$2 x+2 y+y=180^{\circ}$ (Therefore, $\angle A=2 x, \angle B=2 y, \angle C=y$)
$2 y+3 y=180^{\circ}$ (Therefore, $x=y$)
$5 y=180^{\circ}$
$y=\frac{180}{5}$
$y=36^{\circ}$
Therefore, $x=y=36^{\circ}$
Now,
$\angle A=\angle B A C=2 x=2 * 36^{\circ}=72^{\circ}$
Therefore, $\angle B A C=72^{\circ}$
Hence, proved

10. Question

$A B C$ is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Find $\angle B$ and $\angle C$.

Answer

Given that $A B C$ is a right angled triangle
Such that,
$\angle A=90^{\circ}$
And,
$A B=A C$
Since,
$A B=A C$
$\triangle A B C$ is also isosceles triangle
Therefore, we can say that $\triangle A B C$ is a right angled isosceles triangle.
$\angle C=\angle B$

And,
$\angle A=90^{\circ}$
Now, we have
Sum of angles in a triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$90^{\circ}+\angle B+\angle B=180^{\circ}($ From i)
$90^{\circ}+2 \angle B=180^{\circ}$
$2 \angle B=90^{\circ}$
$\angle B=45^{\circ}$
Therefore, $\angle B=\angle C=45^{\circ}$

Exercise 10.4

1. Question

In Fig. 10.92, it is given that $A B=C D$ and $A D=B C$. Prove that $\triangle A D C \cong \triangle C B A$.

Answer

Given, in the figure

$A B=C D$
And,
$A D=B C$
To prove: $\triangle A D C \cong \triangle C B A$
Proof: Consider, $\triangle A D C$ and $\triangle C B A$
$A B=C D$ (Given)
$B C=A D$ (Given)
$A C=A C$ (Common)
By SSS theorem,
$\triangle A D C \cong \triangle C B A$
Hence, proved

2. Question

In $\triangle P Q R$, if $P Q=Q R$ and L, M and N are the mid-point of the sides $P Q, Q R$ and $R P$ respectively. Prove that $L N=M N$.

Answer

Given that,
In $\triangle P Q R$
$P Q=Q R$
And,
L, M, and N are the mid points of $P Q, Q R$ and $R P$ respectively
To prove: $\mathrm{LM}=\mathrm{MN}$
Construction: Join L and M, M and N and N and L
Proof: We have,
$P L=L Q, Q M=M R$ and $R N=N P$
Since, L, M and N are mid points of $P Q, Q R$ and RP respectively.
And, also $\mathrm{PQ}=\mathrm{QR}$
$\mathrm{PL}=\mathrm{LQ}=\mathrm{QM}=\mathrm{MR}=\frac{P Q}{2}=\frac{Q R}{2}(\mathrm{i})$
Using mid-point theorem, we have
MN || PQ
And,
$M N={ }_{2}^{1} P Q=M N=P L=L Q$ (ii)
Similarly, we have
LN || QR
And,
$\mathrm{LN}=\frac{1}{2} \mathrm{QR}=\mathrm{LN}=\mathrm{QM}=\mathrm{MR}$ (iii)
From equations (i), (ii) and (ii), we have
$P L=L Q=Q M=M R=M N=L N$
Therefore, $\mathrm{LN}=\mathrm{MN}$
Hence, proved

Exercise 10.5

1. Question

$A B C$ is a triangle and D is the mid-point of $B C$. The perpendicular from D to $A B$ and $A C$ are equal. Prove that the triangle is isosceles.

Answer

Given,
$A B C$ is a triangle and D is the mid-point of $B C$
Perpendicular from D to $A B$ and $A C$ are equal.
To prove: Triangle is isosceles
Proof: Let $D E$ and $D F$ be perpendiculars from A on $A B$ and $A C$ respectively.
In order to prove that $A B=A C$, we will prove that $\triangle B D E \cong \triangle C D F$.
In these two triangles, we have
$\angle B E F=\angle C F D=90^{\circ}$
$B D=C D$ (Therefore, D is the mid-point of $B C$)
$D E=D F$ (Given)
So, by RHS congruence criterion, we have
$\triangle B D E \cong \triangle C D F$
$\angle B=\angle C$ (By c.p.c.t)
$A C=A B$ (By c.p.c.t)
As opposite sides and opposite angles of the triangle are equal.
Therefore, $\triangle A B C$ is isosceles

2. Question

$A B C$ is a triangle in which $B E$ and $C F$ are, respectively, the perpendiculars to the sides $A C$ and $A B$. If $B E=C F$, prove that $\triangle A B C$ is isosceles.

Answer

Given that $A B C$ is a triangle in which $B E$ and $C F$ are perpendiculars to the side $A C$ and $A B$ respectively.
Such that,
$B E=C F$
We have to prove that, $\triangle A B C$ is isosceles triangle.
Now, consider $\triangle B C F$ and $\triangle C B E$
We have,
$\angle B F C=\angle C E B=90^{\circ}$ (Given)
$B C=C B$ (Given)
$C F=B E$ (Given)
So, by RHS congruence rule, we have
$\triangle B F C \cong C E B$
Now,
$\angle F B C=\angle E C B$ (By c.p.c.t)
$\angle A B C=\angle A C B(B y$ c.p.c.t)
$A C=A B$ (Opposite sides of equal angles are equal in a triangle)
Therefore, $\triangle A B C$ is isosceles.

3. Question

If perpendiculars from any point within an angle on its arms are congruent, prove that it lies on the bisector of that angle.

Answer

Given that perpendiculars from any point within an angle on its arms are congruent.
We have to prove that it lies on the bisector of that angle.
Now, let us consider an $\angle A B C$ and let BP be one of the arm within the angle.
Draw perpendicular PN and PM On the arms BC and BA
Such that,
They meet $B C$ and $B A$ in N and M respectively.
Now, in $\triangle B P M$ and $\triangle B P N$
We have,
$\angle B M P=\angle B N P=90^{\circ}$ (Given)
$B P=B P(C o m m o n)$
$M P=N P$ (Given)
So, by RHS congruence rule, we have
$\triangle B P M \cong B P N$
$\angle M B P=\angle N B P$ (By c.p.c.t)
$B P$ is the angular bisector of $\angle A B C$
Hence, proved

4. Question

In Fig. 10.99, $A D \perp C D$ and $C B \perp C D$. If $A Q=B P$ and $D P=C Q$, prove that $\angle D A Q=\angle C B P$.

Fig. 10.99

Answer

Given that in figure,
$A D \perp C D$ and $C B \perp C D$
And,
$A Q=B P, D P=C Q$
WE have to prove that,
$\angle D A Q=\angle C B P$
Given that, $\mathrm{DP}=\mathrm{QC}$
Adding PQ on both sides, we get
$D P+P Q=P Q+Q C$
$D Q=P C(i)$
Now consider $\triangle D A Q$ and $\triangle C B P$, we have
$\angle A D Q=\angle B C P=90^{\circ}$ (Given)
$A Q=B P($ Given $)$
And,
$D Q=P C($ From $i)$
So, by RHS congruence rule, we have
$\triangle D A Q \cong \triangle C B P$
Now,
$\angle D A Q=\angle C B P($ By c.p.c.t $)$
Hence, proved

5. Question

$A B C D$ is a square, X and Y are points on sides $A D$ and $B C$ respectively such that $A Y=B X$. Prove that $B Y=A X$ and $\angle B A Y=\angle A B X$.

Answer

Given that $A B C D$ is a square, X and Y are points on the sides $A D$ and $B C$ respectively.
Such that,

$$
A Y=B X
$$

We have to prove: $\mathrm{BY}=\mathrm{AX}$ and $\angle B A Y=\angle A B X$
Join B and X, A and Y
Since, $A B C D$ is a square
$\angle D A B=\angle C B A=90^{\circ}$
$\angle X A B=\angle Y B A=90^{\circ}(\mathrm{i})$
Now, consider $\triangle X A B$ and $\triangle Y B A$
We have,
$\angle X A B=\angle Y B A=90^{\circ}[$ From (i)]
$B X=A Y$ (Given)
$A B=B A$ (Common side)
So, by RHS congruence rule, we have
$\triangle X A B \cong \triangle Y B A$
$\mathrm{BY}=\mathrm{AX}$ and $\angle \mathrm{BAY}=\angle \mathrm{ABX}$ (By c.p.c.t)
Hence, proved

6. Question

Which of the following statements are true (T) and which are false (F):
(i) Sides opposite to equal angles of a triangle may be unequal.
(ii) Angles opposite to equal sides of a triangle are equal.
(iii) The measure of each angle of an equilateral triangle is 60°.
(iv) If the altitude from one vertex of a triangle bisects the opposite side, then the triangle may be isosceles.
(v) The bisectors of two equal angles of a triangle are equal.
(vi) If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles.
(vii) The two altitudes corresponding to two equal sides of a triangle need not be equal.
(viii) If any two sides of a right triangle are respectively equal to two sides of other right triangle, then the two triangles are congruent.
(ix) Two right triangles are congruent if hypotenuse and a side of one triangle are respectively equal to the hypotenuse and a side of the other triangle.

Answer

(i) False: Sides opposite to equal angles of a triangle are equal.
(ii) True: Since, the sides are equal, the corresponding opposite angles must be equal.
(iii) True: Since, all the three angles of an equilateral triangle are equal and sum of the three angles is 180°, so each angle will be equal to $\frac{180}{3}=60^{\circ}$
(iv) False: Here, the altitude from the vertex is also the perpendicular bisector of the opposite side. Here the triangle must be isosceles and may be an equilateral triangle.
(v) True: Since, it is an isosceles triangle, the length of bisector of the two angles are equal.
(vi) False: The angular bisector of the vertex angle is also a median. The triangle must be an isosceles and an equilateral triangle.
(vii) False: Since, two sides are equal the triangle must be an isosceles triangle. The two altitudes
corresponding to two equal sides must be equal.
(viii) False: The two right triangles may or may not be congruent.
(ix) True: According to RHS congruence the given statement is true.

7. Question

Fill in the blanks in the following so that each of the following statements is true.
(i) Sides opposite to equal angles of a triangle are \qquad
(i) Sides opposite to equal angles of a triangle are \qquad
(iii) In an equilateral triangle all angles are \qquad
(iv) In a $\triangle A B C$, if $\angle A=\angle C$, then $A B=$ \qquad
(v) If altitudes $C E$ and $B F$ of a triangle $A B C$ are equal, then, $A B=$ \qquad
(vi) In an isosceles triangle $A B C$ with $A B=A C$, if $B D$ and $C E$ are its altitudes, then $B D$ is \qquad
(vii) In right triangles $A B C$ and $D E F$, if hypotenuse $A B=E F$ and side $A C=D E$, then $\triangle A B C \cong \triangle$ \qquad

Answer

(i) Sides opposite to equal angles of a triangle are equal
(ii) Sides opposite to equal angles of a triangle are equal
(iii) In an equilateral triangle all angles are equal
(iv) In a $\triangle A B C$, if $\angle A=\angle C$, then $A B=\mathrm{BC}$
(v) If altitudes $C E$ and $B F$ of a triangle $A B C$ are equal, then, $A B=A C$
(vi) In an isosceles triangle $A B C$ with $A B=A C$, if $B D$ and $C E$ are its altitudes, then $B D$ is equal to $C E$
(vii) In right triangles $A B C$ and $D E F$, if hypotenuse $A B=E F$ and side $A C=D E$, then $\triangle A B C \cong \triangle E F D$

Exercise 10.6

1. Question

In $\triangle A B C$, if $\angle A=40^{\circ}$ and $\angle B=60^{\circ}$. Determine the longest and shortest sides of the triangle.

Answer

Given that in $\triangle A B C$
$\angle A=40^{\circ}$ and $\angle B=60^{\circ}$
We have to find shortest and longest side.
We know that,
Sum of angles of triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$40^{\circ}+60^{\circ}+\angle C=180^{\circ}$
$100^{\circ}+\angle C=180^{\circ}$
$\angle C=180^{\circ}-100^{\circ}$
$=80^{\circ}$
Now,
$40^{\circ}<60^{\circ}<80^{\circ}$
$\angle A<\angle B<\angle C$
$\angle C$ is greater angle and $\angle A$ is smaller angle.
As, $\angle A<\angle B<\angle C$
$B C<A C<A B$ (Therefore, side opposite to greater angle is larger and side opposite to smaller angle is smaller)

Therefore, $A B$ is longest and $B C$ is smallest or shortest side.

2. Question

In a $\triangle A B C$, if $\angle B=\angle C=45^{\circ}$, which is the longest side?

Answer

Given that in $\triangle A B C$,
$\angle B=\angle C=45^{\circ}$
We have to find longest side.
We know that,
Sum of angles in a triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle \mathrm{A}+45^{\circ}+45^{\circ}=180^{\circ}$
$\angle A+90^{\circ}=180^{\circ}$
$\angle A=90^{\circ}$
Therefore, $B C$ is the longest side because side opposite to greater angle is larger.

3. Question

In $\triangle A B C$, side $A B$ is produced to D so that $B D=B C$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$, prove that:
(i) $A D>C D$ (ii) $A D>A C$

Answer

Given that in $\triangle A B C$, side $A B$ is produced to D so that $B D=B C$ and $\angle B=60^{\circ}, \angle A=70^{\circ}$ We have to prove that,
(i) $A D>C D$

And, (ii) AD > AC
First join C and D
Now,
In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ (Sum of all angles of triangle)
$\angle C=180^{\circ}-70^{\circ}-60^{\circ}$
$=50^{\circ}$
$\angle C=50^{\circ}$
$\angle A C B=50^{\circ}(\mathrm{i})$
And also in $\triangle B D C$,
$\angle D B C=180^{\circ}-\angle A B C$ (Therefore, $\angle A B D$ is straight angle)
$=180^{\circ}-60^{\circ}$
$=120^{\circ}$
$B D=B C$ (Given)
$\angle B C D=\angle B D C$ (Therefore, angle opposite to equal sides are equal)
Now,
$\angle D B C+\angle B C D+\angle B D C=180^{\circ}$ (Sum of all sides of triangle)
$120^{\circ}+\angle B C D+\angle B C D=180^{\circ}$
$2 \angle B C D=180^{\circ}-120^{\circ}$
$2 \angle B C D=60^{\circ}$
$\angle B C D=30^{\circ}$
Therefore, $\angle B C D=\angle B D C=30^{\circ}$ (ii)
Now, consider $\triangle A D C$,
$\angle B A C=\angle D A C=70^{\circ}$ (Given)
$\angle B D C=\angle A D C=30^{\circ}[$ From (ii) $]$
$\angle A C D=\angle A C B+\angle B C D$
$=50^{\circ}+30^{\circ}$ [From (i) and (ii)]
$=80^{\circ}$
Now,
$\angle A D C<\angle D A C<\angle A C D$
$\mathrm{AC}<\mathrm{DC}<\mathrm{AD}$ (Therefore, side opposite to greater angle is longer and smaller angle is smaller)
$A D>C D$
And,
$A D>A C$
Hence, proved
We have,
$\angle A C D>\angle D A C$
And,
$\angle A C D>\angle A D C$
$A D>D C$
And,
AD > AC (Therefore, side opposite to greater angle is longer and smaller angle is smaller)

4. Question

Is it possible to draw a triangle with sides of length $2 \mathrm{~cm}, 3 \mathrm{~cm}$, and 7 cm ?

Answer

Given, Length of sides are $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm .

We have to check whether it is possible to draw a triangle with the given length of sides.
We know that,
A triangle can be drawn only when the sum of any two sides is greater than the third side.
Here,
$2+3>7$
So, the triangle does not exist.

5. Question

In $\triangle A B C, \angle B=35^{\circ}, \angle C=65^{\circ}$ and the bisector of $\angle A B C$ meets $B C$ in P. Arrange $A P, B P$ and $C P$ in descending order.

Answer

Given: $\angle B=35^{\circ}$
$\angle C=65^{\circ}$
The bisector of $\angle A B C$ meets $B C$ in P
We have to arrange AP, BO and CP in descending order
In $\triangle A C P$, we have
$\angle A C P>\angle C A P$
$A P>C P(\mathrm{i})$
In $\triangle A B P$, we have
$\angle B A P>\angle A B P$
$B P>A P$ (ii)
From (i) and (ii), we have
$B P>A P>C P$

6. Question

O is any point in the interior of $\triangle A B C$. Prove that
(i) $A B+A C>O B+O C$
(ii) $A B+B C+C A>O A+O B+O C$
(iii) $O A+O B+O C>\frac{1}{2}(A B+B C+C A)$

Answer

Given that, O is any point in the interior of $\triangle A B C$
We have to prove:
(i) $A B+A C>O B+O C$
(ii) $A B+B C+C A>O A+O B+O C$
(iii) $O A+O B+O C>\frac{1}{2}(A B+B C+C A)$

We know that,
In a triangle sum of any two sides is greater than the third side.
So, we have
In $\triangle A B C$
$A B+B C>A C$
$B C+A C>A B$
$A C+A B>B C$
In $\triangle O B C$,
$\mathrm{OB}+\mathrm{OC}>\mathrm{BC}(\mathrm{i})$
In $\triangle O A C$,
$\mathrm{OA}+\mathrm{OC}>\mathrm{AC}$ (ii)
In $\triangle O A B$,
$O A+O B>A B$ (iii)
Now, extend BO to meet AC in D.
In $\triangle A B D$, we have
$A B+A D>B D$
$\mathrm{AB}+\mathrm{AD}>\mathrm{BO}+\mathrm{OD}$ (iv) [Therefore, $\mathrm{BD}=\mathrm{BO}+\mathrm{OD}]$
Similarly,
In $\triangle O D C$, we have
$O D+D C>O C(v)$
(i) Adding (iv) and (v), we get
$A B+A D+O D+D C>B O+O D+O C$
$A B+(A D+D C)>O B+O C$
$A B+A C>O B+O C(v i)$
Similarly, we have
$\mathrm{BC}+\mathrm{BC}>\mathrm{OA}+\mathrm{OC}($ vii)
And,
$C A+C B>O A+O B$ (viii)
(ii) Adding (vi), (vii) and (viii), we get
$A B+A C+B C+B A+C A+C B>O B+O C+O A+O C+O A+O B$
$2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CA}>2 \mathrm{OA}+2 \mathrm{OB}+2 \mathrm{OC}$
$2(A B+B C+C A)>2(O A+O B+O C)$
$A B+B C+C A>O A+O B+O C$
(iii) Adding (i), (ii) and (iii), we get
$O B+O C+O A+O C+O A+O B>B C+A C+A B$
$2 O A+2 O B+2 O C>A B+B C+C A$
$2(O A+O B+O C)>A B+B C+C A$
Therefore, $(O A+O B+O C)>\frac{1}{2}(A B+B C+C A)$

7. Question

Prove that the perimeter of a triangle is greater than the sum of its altitudes.

Answer

Given: $\mathrm{A} \triangle A B C$ in which $A D$ perpendicular $B C$ and $B E$ perpendicular $A C$ and $C F$ perpendicular $A B$.
To prove: $A D+B E+C F<A B+B C+A C$
Proof: We know that all the segments that can be drawn into a given line, from a point not lying on it, perpendicular distance i.e. the perpendicular line segment is the shortest. Therefore,

AD perpendicular $B C$
$A B>A D$ and $A C>A D$
$A B+A C>2 A D(i)$
Similarly,
BE perpendicular AC
$B A>B E$ and $B C>B E$
$B A+B C>2 B E(i i)$
And also
CF perpendicular $A B$
$\mathrm{CA}>\mathrm{CF}$ and $\mathrm{CB}>\mathrm{CF}$
$C A+C B>2 C F$ (iii)
Adding (i), (ii) and (iii), we get
$A B+A C+B A+B C+C A+C B>2 A D+2 B E+2 C F$
$2 A B+2 B C+2 C A>2(A D+B E+C F)$
$2(A B+B C+C A)>2(A D+B E+C F)$
$A B+B C+C A>A D+B E+C F$
The perimeter of the triangle is greater than the sum of its altitudes.
Hence, proved

8. Question

Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.

Answer

Given: Let ABCD is a quadrilateral with AC and BD as its diagonals
To Prove: Sum of all the sides of a quadrilateral is greater than the sum of its diagonals

Proof: Consider a quadrilateral $A B C D$ where $A C$ and $B D$ are the diagonals
$A B+B C>A C$ (i) (Sum of two sides is greater than the third side)
$A D+D C>A C$ (ii)
$A B+A D>B D$ (iii)
$D C+B C>B D$ (iv)
Adding (i), (ii), (iii), and (iv)
$A B+B C+A D+D C+A B+A D+D C+B C>A C+A C+B D+B D$
$2(A B+B C+C D+D A)>2(A C+B D)$
$A B+B C+C D+D A>A C+B C$
Hence, proved that the Sum of all the sides of a quadrilateral is greater than the sum of its diagonals

9. Question

In Fig. 10.131, prove that:

Fig. 10.131
(i) $C D+D A+A B+B C>2 A C$
(ii) $C D+D A+A B>B C$

Answer

Given to prove,
(i) $C D+D A+A B+B C>2 A C$
(ii) $C D+D A+A B>B C$

From the given figure,
We know that,
In a triangle sum of any two sides is greater than the third side.
(i) So,

In $\triangle A B C$, we have
$A B+B C>A C(1)$
In $\triangle A D C$, we have
$C D+D A>A C(2)$
Adding (1) and (2), we get
$A B+B C+C D+D A>A C+A C$
$C D+D A+A B+B C>2 A C$
(ii) Now, in $\triangle A B C$, we have
$C D+D A>A C$
Add $A B$ on both sides, we get
$C D+D A+A B>A C+A B>B C$
$C D+D A+A B>B C$
Hence, proved

10. Question

Which of the following statements are true (T) and which are false (F)?
(i) Sum of the three sides of a triangle is less than the sum of its three altitudes.
(ii) Sum of any two sides of a triangle is greater than twice the median drawn to the third side.
(iii) Sum of any two sides of a triangle is greater than the third side.
(iv) Difference of any two sides of a triangle is equal to the third side.
(v) If two angles of a triangle are unequal, then the greater angle has the larger side opposite to it.
(vi) Of all the line segments that can be drawn from a point to a line not containing it, the perpendicular line segment is the shortest one.

Answer

(i) False: Sum of three sides of a triangle is greater than sum of its three altitudes.
(ii) True
(iii) True
(iv) False: The difference of any two sides of a triangle is less than the third side.
(v) True: The side opposite to greater angle is longer and smaller angle is shorter in a triangle.
(vi) True: The perpendicular distance is the shortest distance from a point to a line not containing it.

11. Question

Fill in the blanks to make the following statements true:
(i) In a right triangle the hypotenuse is the \qquad side.
(ii) The sum of three altitudes of a triangle is \qquad than its perimeter.
(iii) The sum of any two sides of a triangle is \qquad than the third side.
(iv) If two angles of a triangle are unequal, then the smaller angle has the \qquad side opposite to it.
(v) Difference of any two sides of a triangle is \qquad than the third side.
(vi) If two sides of a triangle are unequal, then the larger side has \qquad angle opposite to it.

Answer

(i) In a right triangle the hypotenuse is the largest side.
(ii) The sum of three altitudes of a triangle is less than its perimeter.
(iii) The sum of any two sides of a triangle is greater than the third side.
(iv) If two angles of a triangle are unequal, then the smaller angle has the smaller side opposite to it.
(v) Difference of any two sides of a triangle is less than the third side.
(vi) If two sides of a triangle are unequal, then the larger side has greater angle opposite to it.

1. Question

In two congruent triangles $A B C$ and $D E F$, if $A B=D E$ and $B C=E F$. Name the pairs of equal angles.

Answer

By c.p.c.t. that is corresponding part of congruent triangles, the pair of equal angles are:
$\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$

2. Question

In two triangles $A B C$ and $D E F$, it is given that $\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$. Are the two triangles necessarily congruent?

Answer

No, the two triangles are not necessarily congruent in the given case as knowing only angle-angle-angle (AAA) does not work because it can produce similar but not congruent triangles.

3. Question

If $A B C$ and $D E F$ are two triangles such that $A C=2.5 \mathrm{~cm}, B C=5 \mathrm{~cm}, \angle C=75^{\circ}, D E=2.5 \mathrm{~cm}, D F=5 \mathrm{~cm}$ and $\angle D=75^{\circ}$. Are two triangles congruent?

Answer

Yes, the given triangles are congruent as $A C=D E, B C=D F$ and $\angle D$ is equal to $\angle C$. Hence, By SAS theorem triangle $A B C$ is congruent to triangle EDF.

4. Question

In two triangles $A B C$ and $A D C$, if $A B=A D$ and $B C=C D$. Are they congrulent?

Answer

Yes, the given triangles are congruent as $A B=A D, B C=C D$ and $A C$ is a common side. Hence, by SSS theorem triangle $A B C$ is congruent to triangle $A D C$.

5. Question

In triangles $A B C$ and $C D E$, if $A C=C E, B C=C D, \angle A=60^{\circ}, \angle C=30^{\circ}$ and $\angle D=90^{\circ}$. Are two triangles congruent?

Answer

Yes, the two given triangles are congruent because $A C=C E, B C=C D$
And $\angle B=\angle D=90^{\circ}$.
Therefore by SSA criteria triangle $A B C$ is congruent to triangle CDE.

6. Question

$A B C$ is an isosceles triangle in which $A B=A C . B E$ and $C F$ are its two medians. Show that $B E=C F$.

Answer

Given,
$A B C$ is an isosceles triangle
$A B=A C$
$B E$ and CF are two medians
To prove: $\mathrm{BE}=\mathrm{CF}$
Proof: In $\triangle B E C$ and $\triangle C F B$
$\mathrm{CE}=\mathrm{BF}$ (Since, $\mathrm{AC}=\mathrm{AB}=\frac{1}{2} A C=\frac{1}{2} \mathrm{AB}=\mathrm{CE}=\mathrm{BF}$)
$\angle E C B=\angle F B C$ (Angle opposite to equal sides are equal)
$B C=B C$ (Common)
Therefore, By SAS theorem
$\triangle \mathrm{BEC} \cong C F B$
$B E=C F($ By c.p.c.t)

7. Question

Find the measure of each angle of an equilateral triangle.

Answer

Let $A B C$ is an equilateral triangle
We know that all the angles in an equilateral triangle are equal.
Therefore,
$\angle A=\angle B=\angle C$ (i)
Now,
$\angle A+\angle B+\angle C=180^{\circ}$ (Sum of all angles of a triangle)
$\angle A+\angle A+\angle A=180^{\circ}$
$3 \angle A=180^{\circ}$
$\angle A=\frac{180}{3}$
$=60^{\circ}$
Hence, the measure of each angle of an equilateral triangle is 60°.

8. Question

$C D E$ is an equilateral triangle formed on a side $C D$ of a square $A B C D$. Show that $\triangle A D E \cong \triangle B C E$.
Answer

Given: An equilateral triangle CDE is on side CD of square $A B C D$
To prove: $\triangle A D E \cong \triangle B C E$
Proof: $\angle E D C=\angle D C E=\angle C E D=60^{\circ}$ (Angles of equilateral triangle)
$\angle A B C=\angle B C D=\angle C D A=\angle D A B=90^{\circ}$ (Angles of square)
$\angle E D A=\angle E D C+\angle C D A$
$=60^{\circ}+90^{\circ}$
$=150^{\circ}(\mathrm{i})$
Similarly,
$\angle E C B=150^{\circ}$ (ii)
In $\triangle A D E$ and $\triangle B C E$
$\mathrm{ED}=\mathrm{EC}$ (Sides of equilateral triangle)
$A D=B C$ (Sides of square)
$\angle E D A=\angle E C B[F r o m$ (i) and (ii)]
Therefore, By SAS theorem
$\triangle A D E \cong \triangle B C E$

9. Question

Prove that the sum of three altitudes of a triangle is less than the sum of its sides.

Answer

$\ln \triangle \mathrm{APB}$,
$A P$ is a median
Angle APB is greater than angle ABP
So angle opposite to greater side is longer
Therefore, AB is greater than AP
Hence proved that in triangle APB the side of the triangle is more than the median or altitude AP of the triangle.

Similarly, in the same manner the other triangles can also be proved.

10. Question

In Fig. 10.134, if $A B=A C$ and $\angle B=\angle C$. Prove that $B Q=C P$.

Fig. 10.134

Answer

Given,
$\angle B=\angle C$
$A B=A C$
To Prove: $\mathrm{BQ}=\mathrm{CP}$
Proof: In $\triangle \mathrm{ABQ}$ and $\triangle \mathrm{ACP}$
$\angle B=\angle C$ (Given)
$A B=A C$ (Given)
$\angle A=\angle A$ (Common)
Hence, by A.S.A. Theorem
$\triangle \mathrm{ABQ} \cong \triangle \mathrm{ACP}$
$B Q=C P(B y$ c.p.c.t)

1. Question

If $\triangle A B C \cong \triangle L K M$, then side of $\triangle L K M$ equal to side $A C$ of $\triangle A B C$ is
A. $L K$
B. $K M$
C. $L M$
D. None of these

Answer

Since, by corresponding part of congruent triangle $A C$ of $\triangle A B C$ is equal to the $L M$ of $\triangle L K M$.

2. Question

If $\triangle A B C \cong \triangle A C B$, then $\triangle A B C$ is isosceles with
A. $A B=A C$
B. $A B=B C$
C. $A C=B C$
D. None of these

Answer

$A B$ and $A C$ are the equal sides of equilateral triangle $A B C$ because only then after reverting it to form $\triangle A C B$, the two triangles can be proved congruent.

3. Question

If $\triangle A B C \cong \triangle P Q R$ and $\triangle A B C$ is not congruent to $\triangle P Q R$, then which of the following not true:
A. $B C=P Q$
B. $A C=P R$
C. $A B=P Q$
D. $Q R=B C$

Answer

Since, BC and PQ are the non c.p.c.t. part of the two given triangles, hence we cannot judge them to be equal or not from the given information about them.

4. Question

In triangle $A B C$ and $P Q R$ three equality relations between some parts are as follows:
$A B=Q P, \angle B=\angle P$ and $B C=P R$
State which of the congruence conditions applies:
A. SAS
B. ASA
C. SSS
D. RHS

Answer

Since, two adjacent sides and the so formed angle with the two sides are shown equal while proving them congruent. Hence, by S.A.S. theorem the two triangles can be proved congruent.

5. Question

In triangles $A B C$ and $P Q R$, if $\angle A=\angle R, \angle B=\angle P$ and $A B=R P$, then which one of the following congruence conditions applies:
A. SAS
B. ASA
C. SSS
D. RHS

Answer

Since, the two adjacent angles and the contained side are shown equal while proving the two triangles congruent. Hence, by A.S.A. theorem the two triangles can be proved congruent.

6. Question

In $\triangle P Q R \cong \triangle E F D$ then $E D=$
A. $P Q$
B. $Q R$
C. $P R$
D. None of these

Answer

Since, by corresponding part of congruent triangle ED of $\triangle E F D$ is equal to the $P R$ of $\triangle P Q R$.

7. Question

In $\triangle P Q R \cong \triangle E F D$ then $\angle E=$
A. $\angle P$
B. $\angle Q$
C. $\angle R$
D. None of these

Answer

Since, by corresponding part of congruent triangle $\angle E$ of $\triangle E F D$ is equal to the $\angle P$ of $\triangle P Q R$.

8. Question

In a $\triangle A B C$, if $A B=A C$ and $B C$ is produced to D such that $\angle A C D=100^{\circ}$, then $\angle A=$
A. 20°
B. 40°
C. 60°
D. 80°

Answer

$\angle A C B+\angle A C D=180^{\circ}$
On solving we get,
$\angle A C B=80^{\circ}$
$\angle A B C=\angle A C B=80^{\circ}$ (Angles opposite to equal sides are equal)
In $\triangle \mathrm{ABC}$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle \mathrm{A}+80^{\circ}+80^{\circ}=180^{\circ}$
$\angle A=20^{\circ}$

9. Question

In an isosceles triangle, if the vertex angle is twice the sum of the base angles, then the measure of vertex angle of the triangle is
A. 100°
B. 120°
C. 110°
D. 130°

Answer

Let the base angles be x each,
Vertex angle $=2(x+x)=4 x$
Now, since the sum of all the angles of a triangle is 180°
$x+x+4 x=180^{\circ}$
$6 x=180^{\circ}$
$x=30^{\circ}$
Therefore, vertex angle $=4 x=120^{\circ}$

10. Question

D, E, F are the mid-point of the sides $B C, C A$ and $A B$ respectively of $\triangle A B C$. Then $\triangle D E F$ is congruent to
triangle
A. $A B C$
B. $A E F$
C. $B F D, C D E$
D. $A F E, B F D, C D E$

Answer

Since, the so formed triangle divides the complete triangle $A B C$ into four congruent triangles.

11. Question

Which of the following is not criterion for congruence of triangles?
A. SAS
B. SSA
C. ASA
D. SSS

Answer

Since the two triangles with two adjacent sides and an angle adjacent to any one side among them are shown equal, then the two triangles will be similar but not necessarily congruent.

12. Question

In Fig. 10.135, the measure of $\angle B^{\prime} A C$ is

Fig. 10.135
A. 50°
B. 60°
C. 70°
D. 80°

Answer

In $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$,
$A B=A^{\prime} B^{\prime}$ (Given)
$\angle B=\angle B^{\prime}$ (Given)
$B C=B^{\prime} C^{\prime}$ (Given)
Hence, by S.A.S. theorem,
$\Delta \mathrm{ABC} \cong \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
Therefore,
By c.p.c.t
$\angle A=\angle A^{\prime}$
$3 x=2 x+20$
$x=20^{\circ}$
Therefore angle $A^{\prime}=2 x+20$
$=60^{\circ}$

13. Question

If $A B C$ and $D E F$ are two triangles such that $\triangle A B C \cong \triangle F D E$ and $A B=5 \mathrm{~cm}, \angle B=40^{\circ}$ and $\angle A=80^{\circ}$, Then, which of the following is true?
A. $D F=5 \mathrm{~cm}, \angle F=60^{\circ}$
B. $D E=5 \mathrm{~cm}, \angle E=60^{\circ}$
C. $D F=5 \mathrm{~cm}, \angle E=60^{\circ}$
D. $D E=5 \mathrm{~cm}, \angle D=40^{\circ}$

Answer

In $\triangle A B C$,
$\angle A+\angle B+\angle C=180$
$80^{\circ}+40^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle C=60^{\circ}$
Now, by c.p.c.t
$A B=D F=5 \mathrm{~cm}$
And
$\angle C=\angle E=60^{\circ}$

14. Question

In Fig. 10.136, $A B \perp B E$ and $F E \perp B E$. If $B C=D E$ and $A B=E F$, then $\triangle A B D$ is congruent to

Fig. 10.136
A. $\triangle E F C$
B. $\triangle E C F$
C. $\triangle C E F$
D. $\triangle F E C$

Answer

In $\triangle A B D$ and $\triangle F E C$,
$A B=F E$ (Given)
$\angle B=\angle E\left(\right.$ Each $\left.90^{\circ}\right)$
$B C=D E$ (Given)

Add CD both sides, we get
$B D=E C$
Therefore, by S.A.S. theorem,
$\Delta \mathrm{ABD} \cong \triangle \mathrm{FEC}$

18. Question

$A B C$, is an isosceles triangle such that $A B=A C$ and $A D$ is the median to base $B C$. Then, $\angle B A D=$

Fig. 10.137
A. 55°
B. 70°
C. 35°
D. 110°

Answer

For an isosceles triangle $\angle A B C=\angle A C B=35^{\circ}$
Let the $\angle A D B$ be x
Then,
$\angle A D C=180^{\circ}-x$
As $A D$ is median so $B D=C D$
And for isosceles triangle $A B=A C$
So,
$\frac{A B}{A C}=\frac{B D}{C D}=1$
By angle bisector theorem,
$\angle B A D=\angle C A D=y$ (Let)
For $\triangle \mathrm{BAD}$
$35+x+y=180$ (i)
For $\triangle \mathrm{DAC}$
$35+180-x+y=180(i i)$
$35+y=x$
Therefore,
$35+34+y+y=180^{\circ}$
$2 y+70=180^{\circ}$
$2 y=100^{\circ}$
$y=55^{\circ}$

Therefore,
$\angle B A D=\angle C A D=55^{\circ}$

16. Question

In Fig. 10.138, if $A E / / D C$ and $A B=A C$, the value of $\angle A B D$ is

Fig. 10.138
A. 75°
B. 110°
C. 120°
D. 130°

Answer

$\angle E A P=\angle B C A$ (Corresponding angles)
$\angle B C A=70^{\circ}$
$\angle C B A=\angle B C A$ (Angles opposite to equal sides are equal)
$\angle C B A=70^{\circ}$
Now,
$\angle A B D+\angle C B A=180^{\circ}$
$\angle A B D+70=180^{\circ}$
$\angle A B D=110^{\circ}$

17. Question

In Fig. 10.139, $A B C$ is an isosceles triangle whose side $A C$ is produced to E. Through $C, C D$ is drawn parallel to BA. The value of x is

Fig. 10.139
A. 52°
B. 76°
C. 156°
D. 104°

Answer

$\angle B=\angle C$ (Angles opposite to equal sides are equal)
In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A=76^{\circ}$
Now,
$\angle B A C=\angle A C D$ (Alternate angles)
$\angle A C D=76^{\circ}$
Now,
$\angle A C D+\angle E C D=180^{\circ}$
$x=180-76^{\circ}$
$x=104^{\circ}$
18. Question

In Fig. 10.140, X is a point in the interior of square $A B C D . A X Y Z$ is also a square. If $D Y=3 \mathrm{~cm}$ and $A Z=2 \mathrm{~cm}$, then $B Y=$

Fig. 10.140
A. 5 cm
B. 6 cm
C. 7 cm
D. 8 cm

Answer

$\angle Z=90^{\circ}$ (Angle of square)
Therefore, AZD is a right angle triangle,
By Pythagoras theorem,
$A D^{2}=A Z^{2}+Z D^{2}$
$A D^{2}=2^{2}+(2+3)^{2}$
$A D^{2}=4+25$
$A D=\sqrt{ } 29$
In $\triangle A X B$, with X as right angle,
By Pythagoras theorem,
$A B^{2}=A X^{2}+X B^{2}$
$X B^{2}=29-4$
$X B=5$
$B Y=X B+X Y$
$=5+2$
$=7 \mathrm{~cm}$

19. Question

In Fig. 10.141, $A B C$ is a triangle in which $\angle B=2 \angle C . D$ is a point on side such that $A D$ bisects $\angle B A C$ and $A B=C D$. BE is the bisector of $\angle B$. The measure of $\angle B A C$ is

[Hint: $\triangle A B E \cong \triangle D C E]$
A. 72°
B. 73°
C. 74°
D. 95°

Answer

Given that $\triangle \mathrm{ABC}$
$B E$ is bisector of $\angle B$ and $A D$ is bisector of $\angle B A C$
$\angle B=2 \angle C$
By exterior angle theorem in triangle ADC
$\angle A D B=\angle D A C+\angle C(i)$
In $\triangle \mathrm{ADB}$,
$\angle A B D+\angle B A D+\angle A D B=180^{\circ}$
$2 \angle C+\angle B A D+\angle D A C+\angle C=180^{\circ}[$ From (i)]
$3 \angle C+\angle B A C=180^{\circ}$
$\angle B A C=180^{\circ}-3 \angle C$ (ii)
Therefore,
$A B=C D$
$\angle C=\angle D A C$
$\angle C=1 / 2 \angle B A C$ (iii)
Putting value of Angle C in (ii), we get
$\angle B A C=180^{\circ}-1 / 2 \angle B A C$
$\angle B A C+\frac{3}{2} \angle B A C=180^{\circ}$
$\frac{5}{2} \angle B A C=180^{\circ}$
$\angle B A C=\frac{180 * 2}{5}$
$=72^{\circ}$
$\angle B A C=72^{\circ}$

20. Question

In Fig. 10.142, if $A C$ is bisector of $\angle B A D$ such that $A B=3 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$, then $C D=$

Fig. 10.142
A. 2 cm
B. 3 cm
C. 4 cm
D. 5 cm

Answer

In $\triangle A B C$ using Pythagoras theorem, we get
$A B^{2}+B C^{2}=A C^{2}$
$9+\mathrm{BC}^{2}=25$
$B C=4 \mathrm{~cm}$
In $\triangle A B C$ and $\triangle A D C$
$\angle B A C=\angle C A D$ (Therefore, $A C$ is bisector of $\angle A$)
$\angle B=\angle D=90^{\circ}$
$\angle A B C+\angle B C A+\angle C A B=180^{\circ}$
$\angle C A D+\angle A D C+\angle D C A=180^{\circ}$
$\angle A B C+\angle B C A+\angle C A B=\angle C A D+\angle A D C+\angle D C A$
$\angle B C A=\angle D C A(i)$
In $\triangle A B C$ and $\triangle A D C$
$\angle C A B=\angle C A D$ (Therefore, $A C$ is bisector of $\angle A$)
$\angle B C A=\angle D C A[F r o m(i)$
$A C=A C$ (Common)
By ASA theorem, we have
$\triangle A B C \cong \triangle A D C$
$B C=C D(B y$ c.p.c.t)
$C D=4 \mathrm{~cm}$

