10. Circles

Exercise 10.1

1. Question

Fill in the blanks:
(i) The common point of a tangent and the circle is called \qquad . .
(ii) A circle may have \qquad parallel tangents.
(iii) A tangent to a circle intersects it in \qquad points(s).
(iv) A line intersecting a circle in two points is called a \qquad
(v) The angle between tangent at a point on a circle and the radius through the point is \qquad .

Answer

(i) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
(ii) A circle may have two parallel tangents
(iii) A tangent to a circle intersects it in one point.
(iv) Secant is a line intersecting a circle in two points
(v) The angle between tangent at a point on a circle and the radius through the point is 90°

2. Question

How many tangents can a circle have?

Answer

A circle can have infinite tangents.

3. Question

O is the centre of a circle of radius 8 cm . The tangent at a point A on the circle cuts a line through O at B such that $A B=15 \mathrm{~cm}$. Find $O B$.

Answer

$O B^{2}=8^{2}+15^{2}$
$O B=\sqrt{64+225}$
$O B=17 \mathrm{~cm}$

4. Question

If the tangent at a point P to a circle with centre O cuts a line through O at Q such that $P Q=24 \mathrm{~cm}$ and $\mathrm{OQ}=25 \mathrm{~cm}$. Find the radius of the circle.

Answer

since QT is a tangent to the circle at T and $O T$ is radius,
Therefore OT perpendicular QT
It is given that $\mathrm{OQ}=25 \mathrm{~cm}$ and $\mathrm{QT}=24 \mathrm{~cm}$
By Pythagoras theorem we have

$O B^{2}=O A^{2}+A B^{2}$
$O Q^{2}=Q T^{2}+O T^{2}$
$O T^{2}=25^{2}-24^{2}$
$=49 \times 1=49$
$O T=7$

Exercise 10.2

1. Question

If PT is a tangent at T to a circle whose centre is O and $O P=17 \mathrm{~cm}, O T=8 \mathrm{~cm}$, find the length of the tangent segment PT.

Answer

Given that O is the center of the circle and $\mathrm{OP}=17 \mathrm{~cm}$ and the radius of the circle $\mathrm{OT}=8 \mathrm{~cm}$.
We need to find the length of the segment PT.
The line PT is the tangent line to the circle at the point T , the line through the centre is perpendicular to PT.

$$
\begin{gathered}
O P^{2}=O T^{2}+P T^{2} \\
17^{2}=8^{2}+P T^{2} \\
P T^{2}=289-64 \\
=225 \\
P T^{2}=\sqrt{225}=15
\end{gathered}
$$

2. Question

Find the length of a tangent drawn to a circle with radius 5 cm , from a point 13 cm from the centre of the circle.

Answer

Given: $P Q$ is a tangent to the circle intersect at $O P=13 \mathrm{~cm}$ and $O Q=5 \mathrm{~cm}$
Proof: In right triangle OQP

$$
P Q=\sqrt{O P^{2}-O Q^{2}}=\sqrt{169-25}=12 \mathrm{~cm}
$$

Thereforethelength of the tan gent from the point is 12 cm

3. Question

A point P is 26 cm away from the centre O of a circle and the length $P T$ of the tangent drawn from P to the circle is 10 cm . Find the radius of the circle.

Answer

Let PQ be a tangent to the circle from point P and OQ be the radius at the point of contact.

$$
\begin{aligned}
\therefore & \angle O Q P=90^{\circ} \\
\Rightarrow & \mathrm{OP}^{2}=\mathrm{OQ}^{2}+\mathrm{PQ}^{2} \\
& (\because \text { using Pythagoras theoren. } \\
\Rightarrow & \mathrm{OQ}^{2}=\mathrm{OP}^{2}-\mathrm{PQ}^{2}=26^{2}-10^{2} \\
& =(26+10)(26-10)=36 \times 16 \\
\Rightarrow & O Q=6 \times 4=24
\end{aligned}
$$

\therefore Radius of the circle $=\mathbf{2 4} \mathbf{~ c m}$.

4. Question

If from any point on the common chord of two intersecting circles, tangents be drawn to the circles, prove that they are equal.

Answer

Let the two circle intersect at a point X and $Y, X Y$ is the common chord.

Suppose A is a point on their common chord and AM and AN be the tangent drawn from A to the circle AM is the tangent and $A X Y$ is a secant.
$A M^{2}=A X \times A Y$
AN is the tangent and AXY is the secant.
$A N^{2}=A X \times A Y$
Therefore, from equations (i) and (ii), we get,
$A M=A N$.

5. Question

If the sides of a quadrilateral touch a circle, prove that the sum of a pair of opposite sides is equal to the sum of the other pair.

Answer

Given: the sides of a quadrilateral touch a circle
To prove: the sum of a pair of opposite sides is equal to the sum of the other pair.

Proof:

From the theoram which states that the lengths of the two tangents drawn from an external point to a circle are equalFrom points A the tangents drawn are $A P$ and $A S, A P=A S \ldots$ (1)From points B the tangents drawn are BP and $\mathrm{BQ}, \mathrm{BP}=\mathrm{BQ} \ldots$. (2)From points D the tangents drawn are DR and DS, DR $=\mathrm{DS} \ldots$...(3)From points C the tangents drawn are $C R$ and CQ,CR $=C Q \ldots$. (4)Add 1,2,3 and 4 to get $A P+B P+D R+C R=A S+B Q+D S+C Q(A P+B P)+(D R+C R)=(A S+D S)+(B Q+C Q) A B+D C=A D+B C$

Hence proved

6. Question

If $A B, A C, P Q$ are tangents in Fig. 10.51 and $A B=5 \mathrm{~cm}$, find the perimeter of $\triangle A P Q$.

Fig. 10.51

Answer

Fig. 10.51

Given: $A B$ and $A c$ are tangent to the circle with centre 0
$P Q$ is tangent to the circle at X which intersect $A B$ and $A c$ in P and Q
To find : Perimeter of triangle APQ
Proof:
$\mathrm{AB}=\mathrm{AC}$
$Q C=Q X$
$P B=P X$
$A B=A C=5 \mathrm{~cm}$
Perimeter of $\triangle A P Q=A Q+Q P+A P$
$=A C+A B=5+5=10 \mathrm{~cm}$

7. Question

Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre.

Answer

Three tangent $A B, C D$ and $B D$ of a circle such as $A B$ and $C D$ are two parallel tangent $B D$ intercept an angle BOD at the centre.

To Prove: $\angle B O D=90^{\circ}$

Construction: Join $O Q$ and $O R$
Pr oof: $O P \perp B D$
Inrtght angle $\triangle O Q B$ and $O P B$.
$\triangle S O Q B \cong O P B$.
Sin $c e O Q=O P, \angle Q=\angle P$ and $O B$ is common
So $\angle 1=\angle 2$
Simillarlyin $\triangle s O R D$ and $O P D$ we have $\angle 3=\angle 4$
$\angle B O D=\angle 1+\angle 3$
$=\frac{1}{2}(\angle 1+\angle 2+\angle 3+\angle 4)=\frac{1}{2}\left(180^{\circ}\right)=90^{\circ}$

8. Question

In Fig. 10.52, PQ is tangent at a point R of the circle with centre O . If $\angle T R Q=30^{\circ}$, find $m \angle P R S$.

Fig. 10.52

Answer

Given that, $\angle T R Q=30^{\circ}$
Sin ce,ST is a diameter and angle in a semi - circle is at rt. angle
Therefore, $\angle S R T=90^{\circ}$
Now,
$\angle T R Q+\angle S R T+\angle P R S=180^{\circ}$
$30^{\circ}+90^{\circ}+\angle P R S=180^{\circ}$
$\angle P R S=60^{\circ}$

9. Question

If PA and $P B$ are tangents from an outside point P. such that $P A=10 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. Find the length of chord $A B$.

Answer

Given: $P A$ and $P B$ are tangent of a circle $P A=10 \mathrm{~cm}$ and angle $A P B=60^{\circ}$
Let O be the center of the given circle and C be the point of intersection of $O P$ and $A B$
In triangle PAC and triangle PBC
$\mathrm{PA}=\mathrm{PB}$ (tangent from an external point are equal)
APC $=$ BPC (tangent from an external point are equally inclined to the segment joining center to the point)
$\mathrm{PC}=\mathrm{PC}$ (common)
$\triangle P A C \cong \triangle P B C(b y S A S)$
$A C=B C$
$\angle A P B=\angle A P C+\angle B P C$
$\angle A P C=\frac{1}{2} \angle A P B=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$\angle A P C+\angle B C P=180^{\circ}=90^{\circ}$
Inrttriangle $A C P$
$\sin 30^{\circ}=\frac{A C}{A P}$
$\frac{1}{2}=\frac{A C}{10}=5 \mathrm{~cm}$
$A C=B C$
$A B=5+5=10 \mathrm{~cm}$

10. Question

From an external point P, tangents $P A$ are drawn to a circle with centre O. If $C D$ is the tangent to the circle at a point E and $P A=14 \mathrm{~cm}$, find the perimeter of $\triangle P C D$.

Answer

Given: PA and PB are tangent to the circle with centre O
$C D$ is tangent to the circle at E which intersect $P A$ and $P B$ in C and D
To find : Perimeter of triangle PCD
Proof:
$\mathrm{PA}=\mathrm{PB}$
$C A=D E$
$D B=D E$
$P A=P B=14 \mathrm{~cm}$
Perimeter of $\triangle P C D=P C+C D+P D$
$=P A+P B=14+14=28 \mathrm{~cm}$

11. Question

In Fig. 10.53, $A B C$ is a right triangle right-angled at B such that $B C=6 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$. Find the radius of its incircle.

Fig. 10.53

Answer

Let $A B C$ be the right angled triangle such that angle $B=90^{\circ}, B C=6 \mathrm{~cm}, A B=8 \mathrm{~cm}$. Let O be the centre and r be the radius of the in circle.

$A B, B C$ and $C A$ are tangent to the circle at P, N and M
$\mathrm{OP}=\mathrm{ON}=\mathrm{OM}=\mathrm{r}$ (radius of the circle)
Avea of $\triangle A B C=\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2}$
By Pythagoras theorem,
$C A^{2}=A B^{2}+B C^{2}$
$C A^{2}=8^{2}+6^{2}$
$C A=10 \mathrm{~cm}$
Area of $\triangle A B C=$ Area of $\triangle O A B+$ Area of $\triangle O B C+$ Areaof $\triangle Q Q_{A}$
$24=\frac{1}{2} r \times A B+\frac{1}{2} r \times B C+\frac{1}{2} r \times C A$
$r=\frac{2 \times 24}{A B+B C+C A}$
$r=\frac{48}{8+6+10}=\frac{48}{24}=2 \mathrm{~cm}$

12. Question

From a point P, two tangents $P A$ and $P B$ are drawn to a circle with centre O. If $O P=$ diameter of the circle, show that $\triangle A P B$ is equilateral.

Answer

$A P$ is the tangent to the circle,
According to the theorem which states that tangent to a circle is perpendicular to the
radius through the point of contact.
$\Rightarrow O A \perp A P$
$\angle O A P=90^{\circ}$
Also $O B \perp B P$
$\Rightarrow \angle O B P=90^{\circ}$
In $\Delta \mathrm{OAP} \sin \theta=$ perpendicular/hypotenuse

$$
\sin \angle O P A=\frac{r}{2 r}=\frac{1}{2}
$$

As
$\sin 30^{\circ}=\frac{1}{2}$
$\Rightarrow \angle O P A=30^{\circ}$
Similarly $\angle \mathrm{OPB}=30^{\circ}$ Now $\angle \mathrm{APB}=\angle \mathrm{OPA}+\angle \mathrm{OPB}$
$=30^{\circ}+30^{\circ}$
$=60^{\circ} \ldots$ (1)
In $\triangle \mathrm{PAB}, \mathrm{As} \mathrm{PA}$ and PB are drawn from external point P, By theorem which states that the lengths of the two tangents drawn from external point to a circle are equal
$. \Rightarrow \mathrm{PA}=\mathrm{PBAlso} \angle \mathrm{PAB}=\angle \mathrm{PBA}$
As $\angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ}$ (sum of angles of triangle)
$\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}-\angle \mathrm{APB}$
$\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}-60^{\circ}$
$\Rightarrow 2 \angle \mathrm{PAB}=120^{\circ}$
$\Rightarrow \angle P A B=60^{\circ}$.
From 1 and 2 and $3, \angle \mathrm{PAB}=\angle \mathrm{PBA}=\angle \mathrm{APB}=60^{\circ}$ Hence $\triangle \mathrm{PAB}$ is an equilateral triangle.

13. Question

Two tangent segments PA and PB are drawn to a circle with centre O such that $\angle A P B=120^{\circ}$. Prove that $\mathrm{OP}=2 \mathrm{AP}$.

Answer

Given: Two tangent segments PA and PB are drawn to a circle with centre O such that $\angle A P B=120^{\circ}$.
To prove: $\mathrm{OP}=2 \mathrm{AP}$
Proof:Construct the figure according to the conditions given.

HereIn triangle OAP and OBP, PA = PB (Length of Tangents from external point are equal)
$O A=O B$ (Radii of same circle)
$\mathrm{OP}=\mathrm{OP}$ (common)
$\Delta \mathrm{OAP} \sim \Delta$ OBP (By SSS criterion)
$\angle O P A=\angle O P B=60^{\circ}$.
In Triangle OAP, $\angle O A P=90^{\circ}$ (By theoram which states that tangent to a circle is perpendicular to the radius through the point of contact)We know in a right angle triangle
$\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}$
$\Rightarrow \sin 60^{\circ}=A P / O P$, i.e $1 / 2=A P / O P$
So,OP = 2 AP

Hence proved.

14. Question

If $\triangle A B C$ is isosceles with $A B=A C$ and $C(O, r)$ is the incircle of the $\triangle A B C$ touching $B C$ at L, prove that L bisect BC.

Answer

Given: If $\triangle A B C$ is isosceles with $A B=A C$ and $C(O, r)$ is the incircle of the $\triangle A B C$ touching $B C$ at L.
To prove: L bisect BC.
Proof: Construct the figure according to given condition.

$A B=A C$ (given)From the theorem which states that the lengths of two tangents drawn from external point to a circle are equal. (1) As tangents $A P$ and $A Q$ are drawn from the external point $A \cdot A P=$ $A Q$ Also, $A B=A C \Rightarrow A P+P B=A Q+Q C \Rightarrow A P+P B=A P+Q C \Rightarrow P B=Q C F r o m$ (1) as tangents $B P$ and $B L$ are drawn from external point $B, A n d$ tangents $C Q$ and $C L$ are drawn from external point $C . \Rightarrow B P=B L \ldots \ldots$ (3) $C Q=C L \ldots \ldots$ (4)As we have proved $P B=Q C F$ rom 3 and $4 B L=C L \Rightarrow L$ bisects $B C$.Hence proved.

15. Question

In Fig. 10.54, a circle touches all the four sides of a quadrilateral $A B C D$ with $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C D=4 \mathrm{~cm}$. Find $A D$.

Answer

Here,
$A P=A S$
Let, $A P=A S=X$
Simillarly, $B P=B Q$
$C Q=C R$
$R D=D S$
$\operatorname{Sin} c e, A P=X$
$\Rightarrow B P=A B-A P=6-X$
Now, $B P=B Q=6-X$
$C Q=B C-B Q=7-(6-X)$

$$
=1+X
$$

now, $C Q=C R=1+X$
$R D=C D-C R=4-(1+X)$

$$
=3-X
$$

$R D=D S=3-X$
$A D=A S+S D$
$X+3-X=3$
$A D=3 \mathrm{~cm}$
Here,
$A P=A S$
Let, $A P=A S=X$
Simillarly, $B P=B Q$
$C Q=C R$
$R D=D S$
Sin ce, $A P=X$
$\Rightarrow B P=A B-A P=6-X$
Now, $B P=B Q=6-X$
$C Q=B C-B Q=7-(6-X)$

$$
=1+X
$$

now, $C Q=C R=1+X$
$R D=C D-C R=4-(1+X)$

$$
=3-X
$$

$R D=D S=3-X$
$A D=A S+S D$
$X+3-X=3$
$A D=3 \mathrm{~cm}$

16. Question

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre of the circle.

Answer

Draw a circle with centre O, draw a tangent PR touching circle at P.Draw QP perpendicular to RP at a point P, QP lies in the circle.Now, $\angle O P R=90^{\circ}$ Also, $\angle Q P R=90^{\circ}$ Therefore, $\angle O P R=\angle Q P R T h i s$ is possible only when O lies on QP.Hence, it is proved that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

17. Question

In fig. $10.55, \mathrm{O}$ is the centre of the circle and $B C D$ is tangent to it at C. Prove that $\angle B A C+\angle A C D=90^{\circ}$.

Fig. 10.55

Answer

Fig. 10.55
Given: In the above figure, O is the centre of the circle and $B C D$ is tangent to it at C. To prove: $\angle B A C$ $+\angle A C D=90^{\circ}$ Proof:

In $\triangle \mathrm{OAC}$
$O A=O C \quad$ [radii of same circle]
$\Rightarrow \angle O C A=\angle O A C \quad$ [angles opposite to equal sides are equal]
$\Rightarrow \angle O C A=\angle B A C \quad[1]$
Also,
$\mathrm{OC} \perp \mathrm{BD} \quad$ [Tangent at any point on a circle is perpendicular to the radius through point of contact]
$\Rightarrow \angle O C D=90^{\circ}$
$\Rightarrow \angle O C A+\angle A C D=90^{\circ}$
$\Rightarrow \angle B A C+\angle A C D=90^{\circ} \quad[$ From 1]
Hence Proved

18. Question

Two circles touch externally at a point P. From a point T on the tangent at P, tangents $T Q$ and $T R$ are drawn to the circles with points of contact Q and R respectively. Prove that $T Q=T R$

Answer

Let us label two circles as 'a' and 'b'

As TQ and TP are tangents to circle a,And TP and TR are tangents to circle b.By theorem which states that the lengths of the two tangents drawn from external point to a circle are equal.
$T Q=T P \ldots$ (1)TP=TR \ldots (2)From 1 and $2, T Q=T R H e n c e ~ p r o v e d$

19. Question

In Fig 10.57, a circle is inscribed in a quadrilateral $A B C D$ in which $\angle B=90^{\circ}$. If $A D=23 \mathrm{~cm}, A B=29$ cm and $\mathrm{DS}=5 \mathrm{~cm}$, find the radius r of the circle.

Fig. 10.57

Answer

Given: $A B C D$ is a quadrilateral in which
$\angle B=90^{\circ}$
$A D=23 \mathrm{~cm}, D S=5 \mathrm{~cm}$ and $A B=29 \mathrm{~cm}$
Let the radius of the incircle be rcm .
$A D=D S=5 \mathrm{~cm}$ (tangent from an external point)
Since $A D=23 \mathrm{~cm}$
So,
$A R+R D+A D$
$A R+5=23 \mathrm{~cm}$
$A R=18 \mathrm{~cm}$------(i)
and $A Q=A R$
since $A R=18 \mathrm{~cm}$
So, $A Q+Q B=A B$
Now OP and OQ are radius of the circle. So from tangent P and Q
$\angle O P B=\angle O Q B=90^{\circ}$
$O P B Q$ is asquare
$O P=Q B$
RAdius of the circle $=11 \mathrm{~cm}$

20. Question

In Fig. 10.58, there are two concentric circles with centre O of radii 5 cm and 3 cm . from an external point P, tangents $P A$ and $P B$ are drawn to these circles. If $A P=12 \mathrm{~cm}$, find the length of $B P$.

Fig. 10.58

Answer

PA and PB are the tangent drawn from the external point P to outer and inner circle respectively
$\angle O A P=2 \angle O B P=90^{\circ}$
Given $O A=5 \mathrm{~cm}, O B=3 \mathrm{~cm}$ and $A P=12 \mathrm{~cm}$
In $\triangle O A P$
$O P^{2}=(12 \mathrm{~cm})^{2}+(5 \mathrm{~cm})^{2}=169 \mathrm{~cm}^{2}$
$O P=13 \mathrm{~cm}$
$I N_{\triangle} O B P$,
$P B^{2}=O P^{2}-O B^{2}$
$P B^{2}=(13 \mathrm{~cm})^{2}-(3 \mathrm{~cm})^{2}=160 \mathrm{~cm}^{2}$
$P B=4 \sqrt{10} \mathrm{~cm}$
Thus the length of $P B=4 \sqrt{10} \mathrm{~cm}$

21. Question

In Fig. 10.59, $A B$ is a cord of length 16 cm of a circle of radius 10 cm . The tangents at A and B intersect at a point P. Find the length of PA.

Fig. 10.59

Answer

$\mathrm{OA}=10 \mathrm{~cm}$

As we know Perpendicular from centre to the chord bisects the chord.

So $A M=M B=8 \mathrm{~cm}$

Using Pythagoras theorem in triangle AOM
$O M=\sqrt{10^{2}-8^{2}}=6 \mathrm{~cm}$
$\tan \angle A O M=\frac{8}{6}=\frac{4}{3}$
Nowin $\triangle O A P$
$\tan \angle A O M=\frac{P A}{O A}$
$P A=\frac{40}{3}$

22. Question

In Fig. 10.60, PA and PB are tangents from an external point P to a circle with centre O. LN touches the circle at A. Prove that PL $+L M=P N+M N$.

Fig. 10.60

Answer

$P A=P B----(i)$
As tangent drawn from external points to a circle are equal in length
$P L+A L=P N+B N------$ (ii)
PLA and PNB are the two tengent which are equal
$A L=M L$ and $B N=M N------($ iii $)$
From (ii) and (iii)
$P L=M L$

23. Question

In Fig. 10.61, $B D C$ is a tangent to the given circle at point D such that $B D=30 \mathrm{~cm}$ and $C D=7 \mathrm{~cm}$. The other tangents BE and CF are drawn respectively from B and C to the circle and meet when produced at A making BAC a right angle triangle. Calculate (i) AF (ii) radius of the circle.

Fig. 10.61

Answer

Given: $A B, B C$ and $A C$ are tangents to the circle at E, D and F.
$B D=30 \mathrm{~cm}$ and $D C=7 \mathrm{~cm}$ and $\angle B A C=90^{\circ}$
Recall that tangents drawn from an exterior point to a circle are equal in length
Hence $B E=B D=30 \mathrm{~cm}$
Also $\mathrm{FC}=\mathrm{DC}=7 \mathrm{~cm}$
Let $A E=A F=x \rightarrow(1)$
Then $A B=B E+A E=(30+x)$
$A C=A F+F C=(7+x)$
$B C=B D+D C=30+7=37 \mathrm{~cm}$
Consider right $\triangle A B C$, by Pythagoras theorem we have

$$
\begin{aligned}
& B C^{2}=A B^{2}+A C^{2} \\
& \Rightarrow(37)^{2}=(30+x)^{2}+(7+x)^{2} \\
& \Rightarrow 1369=900+60 x+x^{2}+49+14 x+x^{2} \\
& \Rightarrow 2 x^{2}+74 x+949-1369=0 \\
& \Rightarrow 2 x^{2}+74 x-420=0 \\
& \Rightarrow x^{2}+37 x-210=0 \\
& \Rightarrow x^{2}+42 x-5 x-210=0 \\
& \Rightarrow x(x+42)-5(x+42)=0 \\
& \Rightarrow(x-5)(x+42)=0 \\
& \Rightarrow(x-5)=0 \text { or }(x+42)=0
\end{aligned}
$$

$\Rightarrow x=5$ or $x=-42$
$\Rightarrow x=5$ [Since x cannot be negative]
$\therefore \mathrm{AF}=5 \mathrm{~cm}$ [From (1)]
Therefore $A B=30+x=30+5=35 \mathrm{~cm}$
$A C=7+x=7+5=12 \mathrm{~cm}$
Let ' O ' be the centre of the circle and ' r ' the radius of the circle.
Join point O, F; points O, D and points O, E.
From the figure,
Area of $(\triangle A B C)=$ Area $(\triangle A O B)+\operatorname{Area}(\triangle B O C)+\operatorname{Area}(\triangle A O C)$
$\therefore \mathrm{r}=5$
Thus the radius of the circle is 5 cm

24. Question

In Fig. 10.62, $P O \perp O Q$. The tangents to the circle at P and Q intersect at a point T. Prove that PQ and OT are right bisectors of each other.

Answer

To prove: $P Q$ and $O T$ are the right bisectors.
Proof:To prove PQ and OT are the right bisectors,
We need to prove $\angle \mathrm{PRT}=\angle \mathrm{TRQ}=\angle \mathrm{QRO}=\angle \mathrm{ORP}=90^{\circ}$
As it is given that $P O \perp O Q$,
$\Rightarrow \angle \mathrm{POQ}=90^{\circ}$

In \triangle POT and Δ OQT
$\mathrm{OP}=\mathrm{OQ}$ (Radius) $\angle \mathrm{OPT}=\angle \mathrm{OQT}=90^{\circ}$ (Tangent to a circle at a point is perpendicular to the radius through the point of contact) $\mathrm{OT}=\mathrm{OT}$ (common)
$\therefore \Delta \mathrm{POT} \cong \triangle \mathrm{OQTThus} \mathrm{PT}=\mathrm{OQ}$ (BY C.P.C.T) $\ldots .$. (1) Now in $\triangle \mathrm{PRT}$ and $\triangle \mathrm{ORQ} \angle \mathrm{TPR}=\angle \mathrm{OQR}$ (alternate angles) $\angle \mathrm{PTO}=\angle \mathrm{TOQ}$ (alternate angles) $\mathrm{PT}=\mathrm{OQ}$ (from (1))) $\therefore \Delta \mathrm{PRT} \cong \triangle \mathrm{ORQThus} \mathrm{TQ}=\mathrm{OP}$ (By C.P.C. T OHence $\mathrm{PT}=\mathrm{TQ}=\mathrm{OQ}=\mathrm{OPThus}$ it is a square \Rightarrow The diagnols bisect at 90°.

Hence proved

25. Question

In Fig. 10.63, two tangents $A B$ and $A C$ are drawn to a circle with centre O such that $\angle B A C=120^{\circ}$. Prove that $O A=2 A B$.

Fig. 10.63

Answer

It can be clearly show that OA bisects angle CAB ,

$$
\begin{aligned}
& \angle O B C=\angle O B D=60^{\circ} \\
& I n \triangle O A B \\
& \angle O A B=60^{\circ}, \angle O B A=90^{\circ} \\
& \angle B O A+\angle O A B+\angle O B A=180^{\circ} \\
& \angle B O A=180^{\circ}-150^{\circ}=30^{\circ} \\
& \sin (\angle B O A)=\frac{A B}{A O} \\
& \sin 30^{\circ}=\frac{A B}{A O} \\
& \frac{1}{2}=\frac{A B}{A O} \\
& A O=2 A B
\end{aligned}
$$

26. Question

In Fig. 10.64, $B C$ is a tangent to the circle O. $O E$ bisects $A P$. Prove that $\triangle A E O \sim \triangle A B C$.

Answer

Triangle AOP is an isosceles triangle because $O A=O P$ as they are the radius of the circle. We know that radius of the circle is always perpendicular to the tangent at the point of contact.

Here $O B$ is the radius and $B C$ is the tangent and B is the point of contact, Therefore
$\angle A B C=90^{\circ}$
Also from the property of isoceles triangle we have found that
$\angle O E A=90^{\circ}$
Therefore,
$\angle A B C=\angle O E A$
\angle Ais common angle to bothtriangle
THerefore, from AA postulates of similar triangle
$\triangle A O E \sim \triangle A B C$

27. Question

The lengths of three consecutive sides of a quadrilateral circumscribing a circle are $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 7 cm respectively. Determine the length of the fourth side.

Answer

Given
$A B=7, B C=5, C D=4$
Length of the tangent drawn from an external point to the circle are equal
Theref ore
$A B+C D=B C+A D$
$7+4=5+A D$
$A D=11-5=6$

28. Question

In Fig. 10.65, common tangents PQ and RS to two circles intersect at A. Prove that $P Q=R S$.

Fig. 10.65

Answer

Given: $P Q$ and $R S$ are the two common tangent to the circle
To Proof: A is the point of intersection of PQ and RS
We know that, length of two tangent drawn from an exterior point to acirclr are equal.
Therefore
PA = RA ----------------- (
$\mathrm{QA}=\mathrm{SA}$
Adding two equations we get
$P A+Q A=R A+S A$
$P Q=R S$ (proved)

29. Question

Equal circles with centres O and O^{\prime} touch each other at X . OO^{\prime} produced to meet a circle with centre O^{\prime}, at A. $A C$ is tangent to the circle whose centre is O. $O^{\prime} D$ is perpendicular to $A C$. Find the value of $\frac{D O^{\prime}}{C O}$.

Fig. 10.66

Answer

We know that $\angle A D O^{\prime}=90^{\circ}$ (since $O^{\prime} D$ is perpendicular to $A C$)
As we know radius is perpendicular to the tangent.
So, OC $\perp A C$
$\Rightarrow \angle A C O=90^{\circ}$
In $\triangle A D O^{\prime}$ and $\triangle A C O$,
$\angle A D O^{\prime}=\angle A C O\left(\right.$ each $\left.90^{\circ}\right)$
$\angle D A O=\angle C A O$ (common)
By AA criteria,
$\triangle A D O^{\prime} \sim \triangle A C O$
As we know corresponding sides of a triangle are in ratio. $\frac{A O^{\prime}}{A O}=\frac{D O^{\prime}}{C O}$
$A O=A O^{\prime}+O^{\prime} X+O X$
As radii of two circles are equal.
$\Rightarrow A O=A O^{\prime}+A O^{\prime}+A O^{\prime}$
$=3 A^{\prime}$
$\frac{A O^{\prime}}{A O}=\frac{A O^{\prime}}{3 A O}=\frac{1}{3} \quad \frac{\mathrm{DO}}{\mathrm{CO}}=\frac{A O^{\prime}}{3 A O}=\frac{1}{3} \quad \Rightarrow \frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}=\frac{1}{3}$

30. Question

In Fig. 10.67, $O Q: P Q=3: 4$ and perimeter of $\triangle P O Q=60 \mathrm{~cm}$. Determine $P Q, O R$ and $O P$.

Answer

Given that $\mathrm{OQ}: \mathrm{PQ}=3: 4$
Let ratio coefficient $=x$, so
$\mathrm{OQ}=3 \mathrm{x}$ and $\mathrm{PQ}=4 \mathrm{x}$
We know that a tangent to a circle is perpendicular to the radius at the point of tangency So
$\angle O Q P=90^{\circ}$
Then applying Pythagoras theorem in triangle POQ

$$
\begin{aligned}
& O P^{2}=O Q^{2}+P Q^{2} \\
& O P^{2}=(3 x)^{2}+(4 x)^{2} \\
& O P^{2}=9 x^{2}+16 x^{2} \\
& O P^{2}=25 x^{2} \\
& O P=5 x
\end{aligned}
$$

$$
\text { Perimeter of a triangle } P O Q \text { is }=60 \mathrm{~cm} \text {, So }
$$

$$
3 x+4 x+5 x=60
$$

$$
12 x=60
$$

$$
x=5
$$

So,

$$
O Q=3 x=15 \mathrm{~cm}
$$

$$
P Q=4 x=20 \mathrm{~cm}
$$

$$
O P=5 x=25 \mathrm{~cm}
$$

$$
Q R=2(O Q)=2 \times 15=30 \mathrm{~cm}
$$

31. Question

Two concentric circles are of diameters 30 cm and 18 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Answer

In the diagram $A B$ is the chord touching the smaller circle. We have the right angled triangle $O O^{\prime} B$
By Pythagoras theorem
$O^{\prime} B=\sqrt{(30)^{2}+(18)^{2}}=24 \mathrm{~cm}$
Now since the chord of the larger circle which touches the smaller circle is bisected at the point of contact

We have
$A B=2 \times 24=48 \mathrm{~cm}$
So ans is 18 cm .

32. Question

A triangle $P Q R$ is drawn to circumscribe a circle of radius 8 cm such that the segments $Q T$ and $T R$, into which $Q R$ is divided by the point of contact T, are of lengths 14 cm and 16 cm respectively. If area of $\triangle P Q R$ is $336 \mathrm{~cm}^{2}$, find the sides $P Q$ and $P R$.

Answer

Let $P Q$ and $P R$ touch the circle at points S and U respectively. Join O with P, Q, R, S and U

We have $O S=O T=O U=6 \mathrm{~cm}$
$\mathrm{QT}=12 \mathrm{~cm}$ and $\mathrm{TR}=9 \mathrm{~cm}$
$\mathrm{QR}=\mathrm{QT}+\mathrm{TR}=12 \mathrm{~cm}+9 \mathrm{~cm}=21 \mathrm{~cm}$
Now QT $=$ QS=12 cm (tangent from the same point)
$T R=R U=9 \mathrm{~cm}$
Let $P S=P U=x \mathrm{~cm}$
Then $P Q=P S+S Q-(12+x) \mathrm{cm}$ and $P R=P U+R U=(9+x) \mathrm{cm}$
It is clear that

$$
\begin{aligned}
& \operatorname{ar}(\triangle O Q R)+\operatorname{ar}(\triangle O P R)+\operatorname{ar}(\triangle O P Q)=\operatorname{ar} \cdot(\triangle P Q R) \\
& \frac{1}{2} \times Q R \times O T+\frac{1}{2} \times P R \times O U+\frac{1}{2} \times P Q \times O S=189 \mathrm{~cm}^{2} \\
& \frac{1}{2} \times(12+x) \times 6+\frac{1}{2} \times(9+x) \times 6+\frac{1}{2} \times 21 \times 6=189 \\
& \frac{1}{2} \times 6(12+x+9+x+21)=189 \\
& 3(42+2 x)=189 \\
& 42+2 x=63 \\
& x=\frac{21}{2}=10.5
\end{aligned}
$$

Thus $P Q=(12+10.5) \mathrm{cm}=22.5 \mathrm{~cm}$ and $\mathrm{PR}=(9+10.5) \mathrm{cm}=19.5 \mathrm{~cm}$

33. Question

In Fig. 10.68, a $\triangle A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ are of lengths 8 cm and 6 cm respectively, Find the lengths of sides $A B$ and $A C$, when area of $\triangle A B C$ is $84 \mathrm{~cm}^{2}$.

Fig. 10.68

Answer

Firstly consider that the given circle will touch the given circle will touch the sides $A B$ and $A C$ of the triangle at a point E and F respectively.

Let $A F=x$
Now in triangle ABC
$C F=C D=6 \mathrm{~cm}$
(Tangent drawn from an external point to a circle are equal. Here tangent is drawn from external point C)
$B E=B D=8 \mathrm{~cm}$ (Tangent drawn from an external point to a circle are equal. Here tangent is drawn from external point B)
$A E=A F=X$
Now $A B=A E+E B=x+8$
Also $B C=B D+D C=8+6=14$ and $C A=C F+F A=6+x$
Now we get all side of the triangle and its area can be find by using hero's formula

Semi - perimeter $=s=\frac{28+2 x}{2}=14+x$
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{(14+x)\{(14+x)-14\}\{(14+x)(6+x)\}\{(14+x)-(8+x)\}}$
$=4 \sqrt{3\left(14 x+x^{2}\right)}$
A. of $\triangle O B C=\frac{1}{2} \times 4 \times 14=28$
A. of $\triangle O C A=\frac{1}{2} \times 4 \times(6+x)=12+2 x$
A. of $\triangle O A B=\frac{1}{2} \times 4 \times(8+x)=16+2 x$

Area of $\triangle A B C=$ Ar of $\triangle O B C+A r$ of $\triangle O C A+$ Ar of $\triangle O A B$
$4 \sqrt{3\left(14 x+x^{2}\right)}=28+12+2 x+16+2 x$
$\sqrt{3\left(14 x+x^{2}\right)}=14+x$
Squarring both side and solving we get
$x(x+14)-7(x+14)=0$
or $x=-14$ and 7
$x=-14$ is not possible
so $x=7$
hence $A B=7+8=15 \mathrm{~cm}$
$C A=6+7=13 \mathrm{~cm}$

34. Question

In Fig. 10.69, $A B$ is a diameter of a circle with centre O and $A T$ is a tangent. If $\angle A O Q=58^{\circ}$, find $\angle A T Q$.

Fig. 10.69
Answer

$$
\begin{aligned}
& \angle A B Q=\frac{1}{2} \angle A O Q \\
& \quad=\frac{1}{2} \times 58=29^{\circ}
\end{aligned}
$$

$\angle A=90^{\circ}$
So
$\angle B A T+\angle A B T+\angle A T Q=180$
$\angle A T Q=180-90+29=61^{\circ}$
$\angle A T Q=61^{\circ}$

35. Question

In Fig. 10.70, tangents $P Q$ and $P R$ are drawn from an external point P to a circle with centre O, such that $\angle \mathrm{RPQ}=30^{\circ}$. A chord RS is drawn parallel to the tangent $P Q$. Find $\angle R Q S$.

Fig. 10.70

Answer

As we know that the tangents drawn from an external point to a circle are equal.
Therefore, $\mathrm{PQ}=\mathrm{PR}$
Also, from the figure, $P Q R$ is an isosceles triangle, because $P Q=P R$
Therefore, $\angle \mathrm{RQP}=\angle \mathrm{QRP}$ (Because the corresponding angles of the equal sides of the isosceles triangle are equal)And, from the angle sum property of a triangle,
$\angle \mathrm{RQP}+\angle \mathrm{QRP}+\angle \mathrm{RPQ}=180^{\circ}$
$\angle \mathrm{RQP}+\angle \mathrm{RQP}+\angle \mathrm{RPQ}=180^{\circ}$
$2 \angle R Q P+\angle R P Q=180^{\circ}$
$2 \angle R Q P+30^{\circ}=180^{\circ}$
$2 \angle R Q P=180^{\circ}-30^{\circ}$
$2 \angle R Q P=150^{\circ}$
$\angle R Q P=150^{\circ} / 2$
Therefore, $\angle \mathrm{RQP}=75^{\circ}$
$S R \| Q P$ and $Q R$ is a transversal
$\because \angle S R Q=\angle P Q R \quad$...[Alternate interior angle]
$\therefore \angle \mathrm{SRQ}=75^{\circ}$
$\Rightarrow \angle O R P=90^{\circ} \ldots$ [Tangent is Perpendicular to the radius through the point of contact]
$\angle O R P=\angle O R Q+\angle Q R P$
$\Rightarrow 90^{\circ}=\angle \mathrm{ORQ}+75^{\circ}$
$\Rightarrow \angle \mathrm{ORQ}=15^{\circ}$
Similarly, $\angle \mathrm{RQO}=15^{\circ}$
In \triangle QOR,
$\angle \mathrm{QOR}+\angle \mathrm{QRO}+\angle \mathrm{OQR}=180^{\circ}$
$\Rightarrow \angle \mathrm{QOR}+15^{\circ}+15^{\circ}=180^{\circ}$
$\Rightarrow \angle Q O R=150^{\circ}$
$\Rightarrow \angle Q S R=\angle Q O R / 2$
$\Rightarrow \angle Q S R=150^{\circ} / 2=75^{\circ}$
In $\triangle \mathrm{RSQ}$,
$\angle \mathrm{RSQ}+\angle \mathrm{QRS}+\angle \mathrm{RQS}=180^{\circ}$
$\Rightarrow 75^{\circ}+75^{\circ}+\angle \mathrm{RQS}=180^{\circ}$
$\angle \mathrm{RQS}=30^{\circ}$

CCE - Formative Assessment

1. Question

In Fig. 10.72, PA and PB are tangents to the circle drawn from an external point P. CD are a third tangent touching the circle at Q . If $\mathrm{PB}=10 \mathrm{~cm}$ and $\mathrm{CQ}=2 \mathrm{~cm}$, what is the length PC ?

Fig. 10.72

Answer

Given:
$P B=10 \mathrm{~cm}$
$C Q=2 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Using the above property,
$\mathrm{PA}=\mathrm{PB}=10 \mathrm{~cm}$ (tangent from P)
And,
$C A=C Q=10 \mathrm{~cm}$ (tangent from C)
Now,
$P C=P A-C A$
$=10 \mathrm{~cm}-2 \mathrm{~cm}$
$=8 \mathrm{~cm}$
Hence, $\mathrm{PC}=8 \mathrm{~cm}$

2. Question

What is the distance between two parallel tangents of a circle of radius 4 cm ?

Answer

Given:
Radius of circle (say PO) $=4 \mathrm{~cm}$

Let $A B \| C D$ be two tangents which meets the circle at P and Q respectively. And, O be the center of circle.

Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, we can say that distance between two parallel tangents of a circle is equal to its diameter.

Therefore,
$P Q=2 \times P O$
$=2 \times 4 \mathrm{~cm}$
$=8 \mathrm{~cm}$
Hence, Distance between tangents $=8 \mathrm{~cm}$

3. Question

The length of tangent from a point A at a distance of 5 cm from the center of the circle is 4 cm . What is the radius of the circle?

Answer

Given:
OA (say) $=5 \mathrm{~cm}$
$A B=4 \mathrm{~cm}$

Let $A C$ be the tangent which meets the circle at the point B and O be the center of circle.
Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle A O B$ is right-angled at $\angle O B A$.
Therefore, by Pythagoras Theorem,
$A B^{2}+O B^{2}=A O^{2}$
$\Rightarrow O B^{2}=A O^{2}-A B^{2}$
$\Rightarrow O B=\sqrt{ }\left(A O^{2}-A B^{2}\right)$
$\Rightarrow \mathrm{OB}=\sqrt{ }\left(5^{2}-4^{2}\right)$
$\Rightarrow \mathrm{OB}=\sqrt{ }(25-16)$
$\Rightarrow O B=\sqrt{ } 9$
$\Rightarrow \mathrm{OB}=3 \mathrm{~cm}$
Hence, Radius $=3 \mathrm{~cm}$

4. Question

Two tangents TP and TQ are drawn from an external point T to a circle with center O as shown in Fig. 10.73. If they are inclined to each other at an angle of 100°, then what is the value of $\angle \mathrm{POQ}$?

Fig. 10.73

Answer

Given:
$\angle Q T P=100^{\circ}$
Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a quadrilateral $=360^{\circ}$.
By property 1,
$\angle O P T=90^{\circ}$ and $\angle O Q T=90^{\circ}$
And,
By property 2,
$\angle \mathrm{QTP}+\angle \mathrm{OPT}+\angle \mathrm{OQT}+\angle \mathrm{POQ}=360^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=360^{\circ}-\angle \mathrm{QTP}+\angle \mathrm{OPT}+\angle \mathrm{OQT}$
$\Rightarrow \angle \mathrm{POQ}=360^{\circ}-100^{\circ}+90^{\circ}+90^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=360^{\circ}-280^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=80^{\circ}$
Hence, $\angle \mathrm{POQ}=80^{\circ}$

5. Question

What the distance between two parallel tangents to a circle of radius 5 cm ?

Answer

Given:
Radius of circle (say PO) $=5 \mathrm{~cm}$
P

Let $A B \| C D$ be two tangents which meets the circle at P and Q respectively. And, O be the center of circle.

Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, we can say that distance between two paralleltangents of a circle is equal to its diameter.

Therefore,
$\mathrm{PQ}=2 \times \mathrm{PO}$
$=2 \times 5 \mathrm{~cm}$
$=10 \mathrm{~cm}$
Hence, Distance between tangents $=10 \mathrm{~cm}$

6. Question

In Q. No. 1, if $P B=10 \mathrm{~cm}$, what is the perimeter of $\triangle P C D$?

Fig. 10.72

Answer

Given:
$P B=10 \mathrm{~cm}$
$C Q=2 \mathrm{~cm}$

Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Using the above property,
$\mathrm{PA}=\mathrm{PB}=10 \mathrm{~cm}$ (tangent from P)
$\mathrm{DB}=\mathrm{DQ}=10 \mathrm{~cm}$ (tangent from D)
And,
$C A=C Q=10 \mathrm{~cm}$ (tangent from C)
Now,
Perimeter of $\triangle P C D=P C+C D+D P$
$=P C+C Q+Q D+D P$
$=P C+C A+D B+P D[\because C A=C Q$ and $D B=D Q]$
$=P A+P B[\because P A=P C+C A$ and $P B=P D+B D]$
$=10 \mathrm{~cm}+10 \mathrm{~cm}$
$=20 \mathrm{~cm}$
Hence, Perimeter of $\triangle P C D=20 \mathrm{~cm}$

7. Question

In Fig. 10.74, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then find the length of $B R$.

Fig. 10.74

Answer

Given:
$C P=11 \mathrm{~cm}$
$B C=7 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Using the above property,
$\mathrm{CP}=\mathrm{CQ}=11 \mathrm{~cm}$ (tangent from C)
$B Q=B R$ (tangent from B)

And,
$A P=A R$ (tangent from A)
Now,
$B R=B Q=C Q-C B$
$=11 \mathrm{~cm}-7 \mathrm{~cm}$
$=4 \mathrm{~cm}$
Hence, $B R=4 \mathrm{~cm}$

8. Question

In Fig. 10.75, $\triangle A B C$ is circumscribing a circle. Find the length of $B C$.

Fig. 10.75

Answer

Given:
$A R=4 \mathrm{~cm}$
$B R=3 \mathrm{~cm}$
$A C=11 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Using the above property,
$A R=A Q=4 \mathrm{~cm}$ (tangent from A)
$B R=B P$ (tangent from B)
And,
$C P=C Q$ (tangent from C)
Also,
$C Q=C A-A Q=11 \mathrm{~cm}-4 \mathrm{~cm}=7 \mathrm{~cm}$
Now,
$B C=B P+P C$
$=B R+C Q[\because B R=B P$ and $C P=C Q=7 \mathrm{~cm}]$
$=3 \mathrm{~cm}+7 \mathrm{~cm}$
$=10 \mathrm{~cm}$
Hence, $B C=10 \mathrm{~cm}$

9. Question

In Fig. 10.76, $C P$ and $C Q$ are tangents from an external point C to a circle with centre O. $A B$ is another tangent which touches the circle at R. If $C P=11 \mathrm{~cm}$ and $B R=4 \mathrm{~cm}$, find the length of $B C$.

Fig. 10.76
[Hint: We have, $\mathrm{CP}=11 \mathrm{~cm}$
$\therefore \mathrm{CP}=\mathrm{CQ}=\mathrm{CQ}=11 \mathrm{~cm}$
Now, $B R=B Q$ [Tangents drawn from B)
$\Rightarrow B Q=4 \mathrm{~cm}$
$\therefore B C=C Q-B Q=(11-4) \mathrm{cm}=7 \mathrm{~cm}$

Answer

Given:
$B R=4 \mathrm{~cm}$
$C P=11 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Using the above property,
$B R=B Q=4 \mathrm{~cm}$ (tangent from B)
And,
$\mathrm{CP}=\mathrm{CQ}=11 \mathrm{~cm}$ (tangent from C)
Now,
$B C=C Q-B Q$
$=11 \mathrm{~cm}-4 \mathrm{~cm}$
$=7 \mathrm{~cm}$
Hence, $B C=7 \mathrm{~cm}$

10. Question

Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Answer

Given:
$A O$ (say) $=C O$ (say) $=5 \mathrm{~cm}$
BO (say) $=3 \mathrm{~cm}$

Let $A C$ be the tangent which meets the circle at the point B and O be the center of circle.
Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle A O B$ is right-angled at $\angle O B A$ and $\triangle C O B$ is right-angled at $\angle O B C$.
Therefore,
By Pythagoras Theorem in $\triangle A O B$,
$A B^{2}+O B^{2}=A O^{2}$
$\Rightarrow A B^{2}=A O^{2}-O B^{2}$
$\Rightarrow A B=\sqrt{ }\left(A O^{2}-O B^{2}\right)$
$\Rightarrow A B=\sqrt{ }\left(5^{2}-3^{2}\right)$
$\Rightarrow A B=\sqrt{ }(25-9)$
$\Rightarrow A B=\sqrt{ } 16$
$\Rightarrow A B=4 \mathrm{~cm}$
Similarly,
By Pythagoras Theorem in $\triangle C O B$,
$A B^{2}+O B^{2}=C O^{2}$
$\Rightarrow \mathrm{CB}^{2}=\mathrm{CO}^{2}-\mathrm{OB}^{2}$
$\Rightarrow C B=\sqrt{ }\left(C O^{2}-O B^{2}\right)$
$\Rightarrow C B=\sqrt{ }\left(5^{2}-3^{2}\right)$
$\Rightarrow C B=\sqrt{ }(25-9)$
$\Rightarrow C B=\sqrt{ } 16$
$\Rightarrow C B=4 \mathrm{~cm}$
Now,
$A C=A B+B C$
$=4 \mathrm{~cm}+4 \mathrm{~cm}$
$=8 \mathrm{~cm}$
Hence, Length of chord $=8 \mathrm{~cm}$

11. Question

In Fig. 10.77, PA and PB are tangents to the circle with centre O such that $\angle A P B=50^{\circ}$. Write the measure of $\angle O A B$

Fig. 10.77

Answer

Given:
$\angle \mathrm{APB}=50^{\circ}$
Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 3: Sum of all angles of a triangle $=180^{\circ}$.
By property 1,
$\mathrm{AP}=\mathrm{BP}$ (tangent from P)
Therefore, $\angle \mathrm{PAB}=\angle \mathrm{PBA}$
Now,
By property 3 in $\triangle \mathrm{PAB}$,
$\angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ}$
$\Rightarrow \angle P A B+\angle P B A=180^{\circ}-\angle A P B$
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}-50^{\circ}$
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PBA}=130^{\circ}$
$\Rightarrow \angle \mathrm{PAB}=\angle \mathrm{PBA}=\frac{130^{\circ}}{2}=65^{\circ}$
By property 2,
$\angle \mathrm{PAO}=90^{\circ}$
Now,
$\angle \mathrm{PAO}=\angle \mathrm{PAB}+\angle \mathrm{OAB}$
$\Rightarrow \angle \mathrm{OAB}=\angle \mathrm{PAO}-\angle \mathrm{PAB}$
$\Rightarrow \angle \mathrm{OAB}=90^{\circ}-65^{\circ}=25^{\circ}$
Hence, $\angle O A B=25^{\circ}$

1. Question

A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q such that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is cm
A. 12 cm
B. 13 cm
C. 8.5 cm
D. $\sqrt{119} \mathrm{~cm}$

Answer

Given:
$O Q=12 \mathrm{~cm}$

Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle \mathrm{POQ}$ is right-angled at $\angle \mathrm{OPQ}$.
Therefore,
By Pythagoras Theorem in $\triangle P O Q$,

$$
\begin{aligned}
& O P^{2}+P Q^{2}=O Q^{2} \\
& \Rightarrow P Q^{2}=O Q^{2}-O P^{2} \\
& \Rightarrow P Q=\sqrt{ }\left(O Q^{2}-O P^{2}\right) \\
& \Rightarrow P Q=\sqrt{ }\left(12^{2}-5^{2}\right) \\
& \Rightarrow P Q=\sqrt{ }(144-25) \\
& \Rightarrow P Q=\sqrt{ } 119 \mathrm{~cm}
\end{aligned}
$$

Hence, $\mathrm{PQ}=\sqrt{ } 119 \mathrm{~cm}$

2. Question

From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
A. 7 cm
B. 12 cm
C. 15 cm
D. 24.5 cm

Answer

Given:
$O Q=25 \mathrm{~cm}$

$$
\mathrm{PQ}=24 \mathrm{~cm}
$$

Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle \mathrm{POQ}$ is right-angled at $\angle \mathrm{OPQ}$.
Therefore,
By Pythagoras Theorem in $\triangle \mathrm{POQ}$,
$O P^{2}+P Q^{2}=O Q^{2}$
$\Rightarrow O P^{2}=O Q^{2}-P Q^{2}$
$\Rightarrow O P=\sqrt{ }\left(O Q^{2}-P Q^{2}\right)$
$\Rightarrow O P=\sqrt{ }\left(25^{2}-24^{2}\right)$
$\Rightarrow \mathrm{OP}=\sqrt{ }(625-576)$
$\Rightarrow O P=\sqrt{ } 49 \mathrm{~cm}$
$\Rightarrow \mathrm{OP}=7 \mathrm{~cm}$
Hence, OP = 7 cm

3. Question

The length of the tangent from a point A at a circle, of radius 3 cm , is 4 cm . The distance of A from the centre of the circle is
A. $\sqrt{ } 7 \mathrm{~cm}$
B. 7 cm
C. 5 cm
D. 25 cm

Given:
$A B$ (say) $=4 \mathrm{~cm}$
Radius (OB) $=3 \mathrm{~cm}$

Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle A O B$ is right-angled at $\angle A B O$.
Therefore,
By Pythagoras Theorem in $\triangle \mathrm{POQ}$,
$O A^{2}=O B^{2}+B A^{2}$
$\Rightarrow O A=\sqrt{ }\left(O B^{2}+B A^{2}\right)$
$\Rightarrow O A=\sqrt{ }\left(3^{2}+4^{2}\right)$
$\Rightarrow O A=\sqrt{ }(9+16)$
$\Rightarrow O A=\sqrt{ } 25 \mathrm{~cm}$
$\Rightarrow O A=5 \mathrm{~cm}$
Hence, distance of A from center $=5 \mathrm{~cm}$

4. Question

If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at an angle of 80° then $\angle \mathrm{POA}$ is equal to
A. 50°
B. 60°
C. 70°
D. 80°

Answer

Given:
$\angle \mathrm{APB}=80^{\circ}$

Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a quadrilateral $=360^{\circ}$.
Property 3: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By property 1,
$\angle \mathrm{PAO}=90^{\circ}$
$\angle \mathrm{PBO}=90^{\circ}$
By property 2,
$\angle \mathrm{APB}+\angle \mathrm{PAO}+\angle \mathrm{PBO}+\angle \mathrm{AOB}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=360^{\circ}-\angle \mathrm{APB}+\angle \mathrm{PAO}+\angle \mathrm{PBO}$
$\Rightarrow \angle A O B=360^{\circ}-\left(80^{\circ}+90^{\circ}+90^{\circ}\right)$
$\Rightarrow \angle A O B=360^{\circ}-260^{\circ}$
$\Rightarrow \angle A O B=100^{\circ}$
Now, in $\triangle P O A$ and $\triangle P O B$
$O A=O B[\because$ radius of circle]
$\mathrm{PA}=\mathrm{PB}[$ By property 3 (tangent from P)]
OP $=$ OP [\because common $]$
\therefore By SSS congruency,
$\triangle \mathrm{POA} \cong \triangle \mathrm{POB}$

Hence, by CPCTC
$\angle \mathrm{POA}=\angle \mathrm{POB}$
Now,
$\angle A O B=100^{\circ}$
$\Rightarrow \angle P O A+\angle P O B=100^{\circ}[\because \angle \mathrm{AOB}=\angle \mathrm{POA}+\angle \mathrm{POB}]$
$\Rightarrow \angle \mathrm{POA}+\angle \mathrm{POA}=100^{\circ}[\because \angle \mathrm{POA}=\angle \mathrm{POB}]$
$\Rightarrow 2 \angle \mathrm{POA}=100^{\circ}$
$\Rightarrow \angle \mathrm{POA}=\frac{100^{\circ}}{2}$
$\Rightarrow \angle \mathrm{POA}=50^{\circ}$
Hence, $\angle \mathrm{POA}=50^{\circ}$

5. Question

If TP and TQ are two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then, $\angle \mathrm{PTQ}$ is equal to
A. 60°
B. 70°
C. 80°
D. 90°

Answer
Given:
$\angle \mathrm{POQ}=110^{\circ}$

Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a quadrilateral $=360^{\circ}$.

By property 1,
$\angle T P O=90^{\circ}$
$\angle \mathrm{TQO}=90^{\circ}$
By property 2,
$\angle \mathrm{POQ}+\angle \mathrm{TPO}+\angle \mathrm{TQO}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=360^{\circ}-\angle \mathrm{POQ}+\angle \mathrm{TPO}+\angle \mathrm{TQO}$
$\Rightarrow \angle \mathrm{PTQ}=360^{\circ}-\left(110^{\circ}+90^{\circ}+90^{\circ}\right)$
$\Rightarrow \angle \mathrm{PTQ}=360^{\circ}-290^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=70^{\circ}$
Hence, $\angle \mathrm{PTQ}=70^{\circ}$

6. Question

$P Q$ is a tangent to a circle with centre 0 at the point P. If $A \triangle O P Q$ is an isosceles triangle, then $\angle O Q P$ is equal to
A. 30°
B. 45°
C. 60°
D. 90°

Answer

Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a triangle $=180^{\circ}$.
By property $1, \triangle \mathrm{POQ}$ is right-angled at $\angle \mathrm{OPQ}$ (i.e., $\angle \mathrm{OPQ}=90^{\circ}$).
$\because \triangle P O Q$ is an isosceles triangle
$\therefore \angle \mathrm{POQ}=\angle \mathrm{OQP}$
By property 2,
$\angle \mathrm{POQ}+\angle \mathrm{OQP}+\angle \mathrm{QPO}=180^{\circ}$
$\Rightarrow \angle \mathrm{POQ}+\angle \mathrm{OQP}=180^{\circ}-\angle \mathrm{QPO}$
$\Rightarrow \angle \mathrm{POQ}+\angle \mathrm{OQP}=180^{\circ}-90^{\circ}$
$\Rightarrow \angle \mathrm{POQ}+\angle \mathrm{OQP}=180^{\circ}-90^{\circ}$
$\Rightarrow \angle P O Q+\angle O Q P=90^{\circ}$
$\Rightarrow \angle \mathrm{OQP}+\angle \mathrm{OQP}=90^{\circ}[\because \angle \mathrm{POQ}=\angle \mathrm{OQP}]$
$\Rightarrow 2 \angle O Q P=90^{\circ}$
$\Rightarrow \angle \mathrm{OQP}=\frac{90^{\circ}}{2} \Rightarrow \angle \mathrm{OQP}=45^{\circ}$
Hence, $\angle O Q P=45^{\circ}$

7. Question

Two equal circles touch each other externally at C and $A B$ is a common tangent to the circles. Then, $\angle A C B=$
A. 60°
B. 45°
C. 30°
D. 90°

Answer

Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a straight line $=180^{\circ}$.

Property 3: Sum of all angles of a triangle $=180^{\circ}$.
By property $1, \triangle \mathrm{OAB}$ is right-angled at $\angle \mathrm{OAB}$ (i.e., $\angle \mathrm{OAB}=90^{\circ}$) and $\triangle \mathrm{PBA}$ is right-angled at $\angle \mathrm{PBA}$ (i.e., \angle PBA $=90^{\circ}$)

Clearly,
$\angle \mathrm{b}+\angle \mathrm{c}=\angle \mathrm{OAB}$
$\Rightarrow \angle b+\angle \mathrm{c}=90^{\circ}$
$\Rightarrow \angle b=90^{\circ}-\angle \mathrm{c}$
Similarly,
$\angle \mathrm{d}+\angle \mathrm{e}=\angle \mathrm{PBA}$
$\Rightarrow \angle \mathrm{d}+\angle \mathrm{e}=90^{\circ}$
$\Rightarrow \angle \mathrm{e}=90^{\circ}-\angle \mathrm{d}$
Now,
$\angle \mathrm{a}=\angle \mathrm{b}=90^{\circ}-\angle \mathrm{c}[\because \mathrm{OA}=\mathrm{OC}$ (Radius) $]$
And,
$\angle e=\angle f=90^{\circ}-\angle d[\because P B=P C$ (Radius) $]$
By property 2,
$\angle \mathrm{a}+\angle \mathrm{f}+\angle \mathrm{ACB}=180^{\circ}$
$\Rightarrow \angle A C B=180^{\circ}-\angle \mathrm{a}-\angle \mathrm{f}$
$\Rightarrow \angle A C B=180^{\circ}-\left(90^{\circ}-\angle \mathrm{c}\right)-\left(90^{\circ}-\angle \mathrm{d}\right)$
$\Rightarrow \angle A C B=180^{\circ}-90^{\circ}+\angle \mathrm{c}-90^{\circ}+\angle \mathrm{d}$
$\Rightarrow \angle A C B=\angle C+\angle d$
Now, in $\triangle A C B$
By property 3,
$\angle \mathrm{ACB}+\angle \mathrm{C}+\angle \mathrm{d}=180^{\circ}$
$\Rightarrow \angle A C B+\angle A C B=180^{\circ}[\because \angle A C B=\angle C+\angle d]$
$\Rightarrow 2 \angle A C B=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}=\frac{180^{\circ}}{2}$
$\Rightarrow \angle A C B=90^{\circ}$
Hence, $\angle A C B=90^{\circ}$

8. Question

$A B C$ is a right angled triangle, right angled at B such that $B C=6 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$. A circle with centre O is inscribed in $\triangle A B C$. The radius of the circle is
A. 1 cm
B. 2 cm
C. 3 cm
D. 4 cm

Answer

Given:
$\begin{aligned} B C & =6 \mathrm{~cm} \\ A B & =8 \mathrm{~cm}\end{aligned}$
A

Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 3: Sum of all angles of a quadrilateral $=360^{\circ}$.
By property 1,
AP = AQ (Tangent from A)
$B P=B R($ Tangent from B)
$C R=C Q$ (Tangent from C)
$\because \mathrm{ABC}$ is a right-angled triangle, \therefore by Pythagoras Theorem
$A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow A C^{2}=8^{2}+6^{2}$
$\Rightarrow A C^{2}=64+36$
$\Rightarrow A C^{2}=100$
$\Rightarrow A C=\sqrt{ } 100$
$\Rightarrow A C=10 \mathrm{~cm}$
Clearly,
$A Q+Q C=A C=10 \mathrm{~cm}$
$\Rightarrow A P+R C=10 \mathrm{~cm}[\because A Q=A P$ and $Q C=R C]$
Also,
$A B+B C=8 \mathrm{~cm}+6 \mathrm{~cm}=14 \mathrm{~cm}$
$\Rightarrow A P+P B+B R+R C=14 c m[\because A B=A P+P B$ and $B C=B R+R C]$
$\Rightarrow A P+R C+P B+B R=14 c m$
$\Rightarrow 10 \mathrm{~cm}+B R+B R=14 \mathrm{~cm}[\because A P+R C=10 \mathrm{~cm}$ and $P B=B R]$
$\Rightarrow 10 \mathrm{~cm}+2 \mathrm{BR}=14 \mathrm{~cm}$
$\Rightarrow 2 \mathrm{BR}=14 \mathrm{~cm}-10 \mathrm{~cm}=4 \mathrm{~cm}$
$\Rightarrow \mathrm{BR}=\frac{4}{2} \mathrm{~cm}$
$\Rightarrow B R=2 \mathrm{~cm}$
Now,
$\angle B P O=90^{\circ}$ [By property 3]
$\angle B R O=90^{\circ}$ [By property 3]
$\angle \mathrm{PBM}=90^{\circ}$ [Given]
Now by property 2,
$\angle \mathrm{BPO}+\angle \mathrm{BRO}+\angle \mathrm{PBM}+\angle \mathrm{ROP}=360^{\circ}$
$\Rightarrow \angle \mathrm{ROP}=360^{\circ}-\angle \mathrm{BPO}+\angle \mathrm{BRO}+\angle \mathrm{PBM}$
$\Rightarrow \angle \mathrm{ROP}=360^{\circ}-\left(90^{\circ}+90^{\circ}+90^{\circ}\right)$
$\Rightarrow \angle \mathrm{ROP}=360^{\circ}-270^{\circ}$
$\Rightarrow \angle \mathrm{ROP}=90^{\circ}$
Now, $\because \angle \mathrm{ROP}=90^{\circ}$ and $B P=B R$ which are adjacent sides
\therefore Quadrilateral PBRO is a square
$\Rightarrow \mathrm{PO}=\mathrm{BR}=2 \mathrm{~cm}$
Hence, Radius $=2 \mathrm{~cm}$

9. Question

$P Q$ is a tangent drawn from a point P to a circle with centre O and $Q O R$ is a diameter of the circle such that $\angle \mathrm{POR}=120^{\circ}$, then $\angle \mathrm{OPQ}$ is
A. 60°
B. 45°
C. 30°
D. 90°

Answer

Given:

$$
\angle \mathrm{POR}=120^{\circ}
$$

Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a straight line $=180^{\circ}$.
Property 3: Sum of all angles of a triangle $=180^{\circ}$.
By property 1,
$\angle \mathrm{PQO}=90^{\circ}$
By property 2,
$\angle \mathrm{POQ}+\angle \mathrm{POR}=180^{\circ}$
$\Rightarrow \angle \mathrm{POQ}+120^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=180^{\circ}-120^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=60^{\circ}$
Now by property 3 in $\triangle \mathrm{OPQ}$,
$\angle \mathrm{POQ}+\angle \mathrm{PQO}+\angle \mathrm{OPQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{OPQ}=180^{\circ}-\angle \mathrm{POQ}+\angle \mathrm{PQO}$
$\Rightarrow \angle \mathrm{OPQ}=180^{\circ}-\left(60^{\circ}+90^{\circ}\right)$
$\Rightarrow \angle O P Q=180^{\circ}-150^{\circ}$
$\Rightarrow \angle \mathrm{OPQ}=30^{\circ}$
Hence, $\angle O P Q=30^{\circ}$

10. Question

If four sides of a quadrilateral $A B C D$ are tangential to a circle, then
A. $A C+A D=B D+C D$
B. $A B+C D=B C+A D$
C. $A B+C D=A C+B C$
D. $A C+A D=B C+D B$

Answer

Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$A P=A S$ (tangent from A)
$B P=B Q$ (tangent from B)
$C R=C Q$ (tangent from C)
$D R=D S$ (tangent from D)

Now we add above 4 equations,
$A P+B P+C R+D R=A S+B Q+C Q+D S$
$\Rightarrow A B+C D=A D+B C$
$[\because A P+B P=A B$
$C R+D R=C D$
$A S+D S=A D$
$B Q+C Q=B C]$
Hence, the right option is $A B+C D=A D+B C$

11. Question

The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is
A. $\sqrt{ } 7 \mathrm{~cm}$
B. $2 \sqrt{ } 7 \mathrm{~cm}$
C. 10 cm
D. 5 cm

Answer

Given:
$O A=6 \mathrm{~cm}$
$O B=8 \mathrm{~cm}$

Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle A O B$ is right-angled at $\angle O A B$ (i.e., $\angle O A B=90^{\circ}$).
Therefore by Pythagoras theorem,
$O A^{2}+A B^{2}=O B^{2}$
$\Rightarrow A B^{2}=O B^{2}-O A^{2}$
$\Rightarrow A B^{2}=8^{2}-6^{2}$
$\Rightarrow A B^{2}=64-36$
$\Rightarrow A B^{2}=28$
$\Rightarrow A B=\sqrt{ } 28$
$\Rightarrow A B=2 \sqrt{ } 7$
Hence, length of tangent is $2 \sqrt{ } 7 \mathrm{~cm}$.

12. Question

$A B$ and $C D$ are two common tangents to circles which touch each other at C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$, then $A B$ is equal to
A. 4 cm
B. 6 cm
C. 8 cm
D. 12 cm

Answer

Given:

$A B$ and $C D$ are two common tangents to circles which touch each other at C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$

To find: length of $A B$

Solution:

A D B

Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Since c is the external point to the circles and two common tangents touch each other at c .
By the above property,
$A D=B D=C D=4 \mathrm{~cm}$ (tangent from D)
Now clearly,
$A B=A D+B D$
$\Rightarrow A B=A D+B D$
$\Rightarrow A B=4 \mathrm{~cm}+4 \mathrm{~cm}$
$\Rightarrow A B=8 \mathrm{~cm}$
Hence, $A B=8 \mathrm{~cm}$

13. Question

In Fig. 10.78, if $A D, A E$ and $B C$ are tangents to the circle at D, E and F respectively. Then,

Fig. 10.78
A. $A D=A B+B C+C A$
B. $2 A D=A B+B C+C A$
C. $3 A D=A B+B C+C A$
D. $4 A D=A B+B C+C A$

Answer

Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$A E=A D$ (tangent from A)
$A B=A C$ (tangent from A)
$\mathrm{CD}=\mathrm{CF}$ (tangent from C)
$B F=B E$ (tangent from B)
Now adding the above equations,
$A B+B C+C A=A B+B F+F C+C A$
$\Rightarrow A B+B C+C A=A B+B E+C D+C A$
$\Rightarrow A B+B C+C A=A E+A D[\because A E=A B+B E$ and $A D=A C+C D]$
$\Rightarrow A B+B C+C A=A D+A D[\because A D=A E]$
$\Rightarrow A B+B C+C A=2 A D$
Hence, $2 A D=A B+B C+C A$

14. Question

In Fig. 10.79, $R Q$ is a tangent to the circle with centre O. If $S Q=6 \mathrm{~cm}$ and $Q R=4 \mathrm{~cm}$, then $O R=$

Fig. 10.79
A. 8 cm
B. 3 cm
C. 2.5 cm
D. 5 cm

Answer

Given:
$S Q=6 \mathrm{~cm}$
$Q R=4 \mathrm{~cm}$
Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle R O Q$ is right-angled at $\angle O Q R$ (i.e., $\angle O Q R=90^{\circ}$).
Diameter $\mathrm{QS}=6 \mathrm{~cm}$
Radius $=\frac{\text { Diameter }}{2}$
\Rightarrow Radius $=\frac{6 \mathrm{~cm}}{2}$
\Rightarrow Radius (OQ) $=3 \mathrm{~cm}$
Now by Pythagoras theorem,
$O R^{2}=O Q^{2}+Q R^{2}$
$\Rightarrow O R^{2}=3^{2}+4^{2}$
$\Rightarrow O R^{2}=9+16$
$\Rightarrow O R^{2}=25$
$\Rightarrow \mathrm{OR}=\sqrt{ } 25$
$\Rightarrow \mathrm{OR}=5 \mathrm{~cm}$
Hence, $O R=5 \mathrm{~cm}$.

15. Question

In Fig. 10.80, the perimeter of $\triangle A B C$ is

Fig. 10.80
A. 30 cm
B. 60 cm
C. 45 cm
D. 15 cm

Answer

Given:
$A Q=4 \mathrm{~cm}$
$B R=6 \mathrm{~cm}$
$P C=5 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$A R=A Q=4 \mathrm{~cm}$ (tangent from A)
$B R=B P=6 \mathrm{~cm}$ (tangent from B)
$\mathrm{CP}=\mathrm{CQ}=5 \mathrm{~cm}$ (tangent from C)
Now,

Perimeter of $\triangle A B C=A B+B C+C A$
\Rightarrow Perimeter of $\triangle A B C=A R+R B+B P+P C+C Q+Q A$
$[\because A B=A R+R B$
$B C=B P+P C$
$C A=C Q+Q A]$
\Rightarrow Perimeter of $\triangle A B C=4 \mathrm{~cm}+6 \mathrm{~cm}+6 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}+4 \mathrm{~cm}$
\Rightarrow Perimeter of $\triangle A B C=30 \mathrm{~cm}$
Hence, Perimeter of $\triangle A B C=30 \mathrm{~cm}$

16. Question

In Fig. 10.81, AP is a tangent to the circle with centre O such that $\mathrm{OP}=4 \mathrm{~cm}$ and $\angle \mathrm{OPA}=30^{\circ}$. Then, $A P=$

Fig. 10.81
A. $2 \sqrt{ } 2 \mathrm{~cm}$
B. 2 cm
C. $2 \sqrt{ } 3 \mathrm{~cm}$
D. $3 \sqrt{ } 2 \mathrm{~cm}$

Answer

Given:
$O P=4 \mathrm{~cm}$
$\angle O P A=30^{\circ}$

Fig. 10.81

Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle \mathrm{POA}$ is right-angled at $\angle \mathrm{OAP}$ (i.e., $\angle \mathrm{OAP}=90^{\circ}$).
Now we know that,
$\operatorname{Cos} \theta=\frac{\text { Base }}{\text { Hypotnuse }}$
Therefore,
$\operatorname{Cos} \angle \mathrm{P}=\frac{\mathrm{AP}}{\mathrm{OP}}$
$\Rightarrow \operatorname{Cos} 30^{\circ}=\frac{\mathrm{AP}}{4}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{AP}}{4}$
$\Rightarrow \mathrm{AP}=\frac{4 \times \sqrt{3}}{2}$
$\Rightarrow A P=2 \sqrt{ } 3 \mathrm{~cm}$
Hence, $A P=2 \sqrt{ } 3 \mathrm{~cm}$

17. Question

$A P$ and $P Q$ are tangents drawn from a point A to a circle with centre O and radius 9 cm . If $O A=15$ cm , then $A P+A Q=$
A. 12 cm
B. 18 cm
C. 24 cm
D. 36 cm

Answer

Given:
Radius $=9 \mathrm{~cm}$
$O A=15 \mathrm{~cm}$

Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$A P=A Q$ (tangent from A)
Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle \mathrm{POA}$ is right-angled at $\angle \mathrm{OAP}$ (i.e., $\angle \mathrm{OPA}=90^{\circ}$).
Therefore by Pythagoras theorem,
$A P^{2}+P O^{2}=A O^{2}$
$\Rightarrow A P^{2}=A O^{2}-P O^{2}$
$\Rightarrow A P^{2}=15^{2}-9^{2}$
$\Rightarrow A P^{2}=225-81$
$\Rightarrow A P^{2}=144$
$\Rightarrow A P=\sqrt{ } 144$
$\Rightarrow A P=12$
$A P+A Q=12 \mathrm{~cm}+12 \mathrm{~cm}=24 \mathrm{~cm}$
Hence, $A P+A Q=24 \mathrm{~cm}$

18. Question

At one end of a diameter PQ of a circle of radius 5 cm , tangent XPY is drawn to the circle. The length of chord $A B$ parallel to $X Y$ and at a distance of 8 cm from P is
A. 5 cm
B. 6 cm
C. 7 cm
D. 8 cm

Answer

Given:
Radius $=$ OP $=5 \mathrm{~cm}$
Distance of $A B$ and $X Y=8 \mathrm{~cm}$

\because Distance of $A B$ and $X Y=8 \mathrm{~cm}$
And $A B$ is parallel to $X Y$
$\therefore \mathrm{PR}=8 \mathrm{~cm}$
Join OB
Now,
$\mathrm{OB}=\mathrm{OP}=5 \mathrm{~cm}$ [radius]
Also,
$O R=P R-P O$
$\Rightarrow \mathrm{OR}=8 \mathrm{~cm}-5 \mathrm{~cm}$
$\Rightarrow O R=3 \mathrm{~cm}$
\therefore By Pythagoras theorem in \triangle ORB,
$O B^{2}=O R^{2}+R B^{2}$
$\Rightarrow 5^{2}=3^{2}+R B^{2}$
$\Rightarrow \mathrm{RB}^{2}=5^{2}-3^{2}$
$\Rightarrow R B^{2}=25-9$
$\Rightarrow \mathrm{RB}^{2}=16$
$\Rightarrow R B=4$
Now,
$A B=A R+R B$
$\Rightarrow A B=2 R B$
$\Rightarrow A B=2 \times 4$
$\Rightarrow A B=8 \mathrm{~cm}$
Hence, Length of chord $=8 \mathrm{~cm}$

19. Question

If $P T$ is tangent drawn from a point P to a circle touching it at T and O is the centre of the circle, then $\angle \mathrm{OPT}+\angle \mathrm{POT}=$
A. 30°
B. 60°
C. 90°
D. 180°

Answer

Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a triangle $=180^{\circ}$
By property $1, \triangle \mathrm{PTO}$ is right-angled at $\angle \mathrm{OTP}$ (i.e., $\angle \mathrm{OTP}=90^{\circ}$).

By property 2,
$\angle \mathrm{OTP}+\angle \mathrm{POT}+\angle \mathrm{TPO}=180^{\circ}$
$\Rightarrow 90^{\circ}+\angle \mathrm{POT}+\angle \mathrm{TPO}=180^{\circ}$
$\Rightarrow \angle \mathrm{POT}+\angle \mathrm{TPO}=180^{\circ}-90^{\circ}$
$\Rightarrow \angle \mathrm{POT}+\angle \mathrm{TPO}=90^{\circ}$
Hence, \angle POT $+\angle T P O=90^{\circ}$

20. Question

In the adjacent figure, if $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$, then $A D=$

Fig. 10.82
A. 5 cm
B. 4 cm
C. 6 cm
D. 7 cm

Answer

Given:
$A B=12 \mathrm{~cm}$
$B C=8 \mathrm{~cm}$
$A C=10 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$A D=A F$ (tangent from A)
$B D=B E$ (tangent from B)
$C F=C E$ (tangent from C)
Clearly,
$A B=A D+D B=12 \mathrm{~cm}$
$B C=B E+E C=8 \mathrm{~cm}$
$A C=A F+F C=10 \mathrm{~cm}$
Now,
$A B-B C=12 c m-8 c m$
$\Rightarrow(A D+D B)-(B E+E C)=12 c m-8 c m$
$\Rightarrow A D+D B-B E-E C=12 c m-8 c m$
$\Rightarrow A D+B E-B E-C F=12 \mathrm{~cm}-8 \mathrm{~cm}[\because D B=B E$ and $C F=C E]$
$\Rightarrow A D-C F=12 \mathrm{~cm}-8 \mathrm{~cm}$
$\Rightarrow A D-(10 \mathrm{~cm}-A F)=12 \mathrm{~cm}-8 \mathrm{~cm}[\because A F+F C=10 \mathrm{~cm} \Rightarrow F C=10 \mathrm{~cm}-A F]$
$\Rightarrow A D-(10 \mathrm{~cm}-A F)=4 \mathrm{~cm}$
$\Rightarrow A D-10 \mathrm{~cm}+A F=4 \mathrm{~cm}$
$\Rightarrow A D+A D=4 \mathrm{~cm}+10 \mathrm{~cm}[\because A D=A F]$
$\Rightarrow 2 A D=14 \mathrm{~cm}$
$\Rightarrow \mathrm{AD}=\frac{14 \mathrm{~cm}}{2}$
$\Rightarrow A D=7 \mathrm{~cm}$
Hence, $A D=7 \mathrm{~cm}$

21. Question

In Fig. 10.83, if $A P=P B$, then

Fig. 10.83
A. $A C=A B$
B. $A C=B C$
C. $\mathrm{AQ}=\mathrm{QC}$
D. $A B=B C$

Answer

Given:
$A P=P B$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$A P=A Q$ (tangent from A)
$B R=B P($ tangent from $B)$
$C Q=C R$ (tangent from C)
Clearly,
$A P=B P=B R$
$A Q=A P=B R$
Now,
$A Q+Q C=B R+R C$
$\Rightarrow A C=B C[\because A C=A Q+Q C$ and $B C=B R+R C]$
Hence, $A C=B C$

22. Question

In Fig. 10.84, if $A P=10 \mathrm{~cm}$, then $\mathrm{BP}=$

Fig. 10.84
A. $\sqrt{109} \mathrm{~cm}$
B. $\sqrt{127} \mathrm{~cm}$
C. $\sqrt{119} \mathrm{~cm}$
D. $\sqrt{109} \mathrm{~cm}$

Answer

Given:
$A P=10 \mathrm{~cm}$
$O A=6 \mathrm{~cm}$
$\mathrm{OB}=3 \mathrm{~cm}$
Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle \mathrm{PAO}$ is right-angled at $\angle \mathrm{PAO}$ (i.e., $\angle \mathrm{PAO}=90^{\circ}$) and $\triangle \mathrm{PBO}$ is right-angled at $\angle \mathrm{PBO}$ (i.e., $\angle \mathrm{PBO}=90^{\circ}$).

Therefore by Pythagoras theorem in $\triangle \mathrm{PAO}$,
$O P^{2}=O A^{2}+A P^{2}$
$\Rightarrow O P^{2}=6^{2}+10^{2}$
$\Rightarrow O P^{2}=36+100$
$\Rightarrow \mathrm{OP}=\sqrt{ } 136$
Now by Pythagoras theorem in \triangle PBO,
$O P^{2}=O B^{2}+B P^{2}$
$B P^{2}=O P^{2}-O B^{2}$
$\Rightarrow B P^{2}=(\sqrt{ } 136)^{2}-3^{2}$
$\Rightarrow B P^{2}=136-9$
$\Rightarrow B P=\sqrt{ } 127$
Hence, $B P=\sqrt{ } 127 \mathrm{~cm}$

23. Question

In Fig. 10.85, if PR is tangent to the circle at P and Q is the centre of the circle, then $\angle \mathrm{POQ}=$

Fig. 10.85
A. 110°
B. 100°
C. 120°
D. 90°

Given:
$\angle \mathrm{RPQ}=60^{\circ}$
Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a triangle $=180^{\circ}$.
By property $1, \triangle O P R$ is right-angled at $\angle O P R$ (i.e., $\angle O P R=90^{\circ}$).
$\mathrm{OP}=\mathrm{OQ}[\because$ radius of circle $]$
$\therefore \angle \mathrm{OPQ}=\angle \mathrm{OQP}=30^{\circ}$
Now by property 2,

$$
\begin{aligned}
& \angle \mathrm{OPQ}+\angle \mathrm{OQP}+\angle \mathrm{POQ}=180^{\circ} \\
& \Rightarrow 30^{\circ}+30^{\circ}+\angle \mathrm{POQ}=180^{\circ} \\
& \Rightarrow 60^{\circ}+\angle \mathrm{POQ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{POQ}=180^{\circ}-60^{\circ} \\
& \Rightarrow \angle \mathrm{POQ}=120^{\circ}
\end{aligned}
$$

Hence, $\Rightarrow \angle \mathrm{POQ}=120^{\circ}$

24. Question

In Fig. 10.86, if quadrilateral $P Q R S$ circumscribes a circle, then $P D+Q B=$

Fig. 10.86
A. PQ
B. QR
C. PR
D. PS

Answer

Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$P D=P A$ (tangent from P)
$\mathrm{QB}=\mathrm{QA}$ (tangent from Q)
$R C=R B$ (tangent from R)
SC = SD (tangent from S
Now,
$\mathrm{PD}+\mathrm{QB}=\mathrm{PA}+\mathrm{QA}$
$\Rightarrow P D+Q B=P Q[\because P Q=P A+Q A]$
Hence, $P D+Q B=P Q$

25. Question

In Fig. 10.87, two equal circles touch each other at T, if $Q P=4.5 \mathrm{~cm}$, then $\mathrm{QR}=$

Fig. 10.87
A. 9 cm
B. 18 cm
C. 15 cm
D. 13.5 cm

Answer

Given:
$\mathrm{QP}=4.5 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$\mathrm{PQ}=\mathrm{PT}=\mathrm{PR}=4.5 \mathrm{~cm}$ (tangent from P)
Now,
$Q R=P Q+P R$
$Q R=P Q+P Q[\because P Q=P R]$
$Q R=2 P Q$
$\mathrm{QR}=2 \times 4.5 \mathrm{~cm}$
$\mathrm{QR}=9 \mathrm{~cm}$
Hence, QR = 9 cm

26. Question

In Fig. $10.88, A P B$ is a tangent to a circle with centre O at point P. If $\angle Q P B=500$, then the measure of $\angle P O Q$ is

A. 100°
B. 120°
C. 140°
D. 150°

Answer

Given:
$\angle \mathrm{QPB}=50^{\circ}$
Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a triangle $=180^{\circ}$.
By property $1, \triangle \mathrm{OPB}$ is right-angled at $\angle \mathrm{OPB}$ (i.e., $\angle O P B=90^{\circ}$).
$\angle O P Q=\angle O P B-\angle Q P B$
$\Rightarrow \angle \mathrm{OPQ}=90^{\circ}-50^{\circ}=40^{\circ}$
And,
$\angle O P Q=\angle O Q P[\because \mathrm{OP}=\mathrm{OQ}$ (radius of circle) $]$
Now by property 2,
$\angle \mathrm{OPQ}+\angle \mathrm{OQP}+\angle \mathrm{POQ}=180^{\circ}$
$\Rightarrow 40^{\circ}+40^{\circ}+\angle \mathrm{POQ}=180^{\circ}$
$\Rightarrow 80^{\circ}+\angle \mathrm{POQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=180^{\circ}-80^{\circ}$
$\Rightarrow \angle \mathrm{POQ}=100^{\circ}$

Hence, $\Rightarrow \angle \mathrm{POQ}=100^{\circ}$

27. Question

In Fig. 10.89, if tangents PA and PB are drawn to a circle such that $\angle A P S=30^{\circ}$ and chord $A C$ is drawn parallel to the tangent PB , then $\angle A B C=$

Fig. 10.89
A. 60°
B. 90°
C. 30°
D. None of these

Answer

Given:
$\angle \mathrm{APB}=30^{\circ}$
Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: Sum of all angles of a triangle $=180^{\circ}$
By property 1,
$P A=P B($ tangent from P)
And,
$\angle \mathrm{PAB}=\angle \mathrm{PBA}[\because \mathrm{PA}=\mathrm{PB}]$
By property 2,
$\angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ}$
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PBA}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}-30^{\circ}$
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PBA}=150^{\circ}$
$\Rightarrow \angle \mathrm{PBA}+\angle \mathrm{PBA}=150^{\circ}[\because \angle \mathrm{PAB}=\angle \mathrm{PBA}]$
$\Rightarrow 2 \angle \mathrm{PBA}=150^{\circ}$
$\Rightarrow \angle \mathrm{PBA}=\frac{150^{\circ}}{2}$
$\Rightarrow \angle \mathrm{PBA}=75^{\circ}$
Now,
$\angle \mathrm{PBA}=\angle \mathrm{CAB}=75^{\circ}$ [Alternate angles]
$\angle \mathrm{PBA}=\angle \mathrm{ACB}=75^{\circ}$ [Alternate segment theorem]
Again by property 2,
$\angle C A B+\angle A C B+\angle C B A=180^{\circ}$
$\Rightarrow 75^{\circ}+75^{\circ}+\angle C B A=180^{\circ}$
$\Rightarrow 150^{\circ}+\angle C B A=180^{\circ}$
$\Rightarrow \angle C B A=180^{\circ}-150^{\circ}$
$\Rightarrow \angle C B A=30^{\circ}$
Hence, $\angle C B A=30^{\circ}$

28. Question

In Fig. 10.90, $\mathrm{PR}=$

A. 20 cm
B. 26 cm
C. 24 cm
D. 28 cm

Answer

Given:
$\mathrm{QP}=4 \mathrm{~cm}$
$O Q=3 \mathrm{~cm}$
$\mathrm{SR}=12 \mathrm{~cm}$
$\mathrm{SO}^{\prime}=5 \mathrm{~cm}$
Property: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By above property, $\triangle O P Q$ is right-angled at $\angle O Q P$ (i.e., $\angle O Q P=90^{\circ}$) and $\triangle O^{\prime} S R$ is right-angled at $\angle O^{\prime} S R$ (i.e., $\angle O^{\prime} S R=90^{\circ}$).

By Pythagoras theorem in $\triangle O P Q$,
$O P^{2}=Q P^{2}+O Q^{2}$
$\Rightarrow O P^{2}=4^{2}+3^{2}$
$\Rightarrow O P^{2}=16+9$
$\Rightarrow O P^{2}=25$
$\Rightarrow O P=\sqrt{ } 25$
$\Rightarrow O P=5 \mathrm{~cm}$
By Pythagoras theorem in $\Delta O^{\prime} S R$,
$O^{\prime} R^{2}=S R^{2}+O^{\prime} S^{2}$
$\Rightarrow O^{\prime} R^{2}=12^{2}+5^{2}$
$\Rightarrow O^{\prime} R^{2}=144+25$
$\Rightarrow O^{\prime} R^{2}=169$
$\Rightarrow O^{\prime} R=\sqrt{ } 169$
$\Rightarrow O^{\prime} R^{2}=13 \mathrm{~cm}$
Now,
$P R=P O+O N+N^{\prime}+O^{\prime} R$
$\Rightarrow P R=5 \mathrm{~cm}+3 \mathrm{~cm}+5 \mathrm{~cm}+13 \mathrm{~cm}$
$\Rightarrow P R=26 \mathrm{~cm}$
Hence, $\mathrm{PR}=26 \mathrm{~cm}$

29. Question

Two circles of same radii r and centres O and O ' touch each other at P as shown in Fig. 10.91. If 00' is produced to meet the circle $C\left(O^{\prime}, r\right)$ at A and AT is a tangent to the circle $C(O, r)$ such that $O^{\prime} Q \perp A T$. Then AO: AO' =

Fig. 10.91
A. $3 / 2$
B. 2
C. 3
D. $1 / 4$

Answer

Given:
$A O^{\prime}=r$
$O^{\prime} P=r$
$\mathrm{PO}=r$
$A O=A O^{\prime}+O^{\prime} P+P O$
$\Rightarrow A O=r+r+r$
$\Rightarrow A O=3 r$
Now,
$\frac{\mathrm{AO}}{\mathrm{AO}^{\prime}}=\frac{3 \mathrm{r}}{\mathrm{r}}=3$
Hence, $A O: A O^{\prime}=3$

30. Question

Two concentric circles of radii 3 cm and 5 cm are given. Then length of chord BC which touches the inner circle at P is equal to

Fig. 10.92
A. 4 cm
B. 6 cm
C. 8 cm
D. 10 cm

Answer

Given:
$O A=5 \mathrm{~cm}$
$O Q=3 \mathrm{~cm}$
Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By property $1, \triangle O A Q$ is right-angled at $\angle O Q A$ (i.e., $\angle O Q A=90^{\circ}$).
By Pythagoras theorem in $\triangle O A Q$,
$O A^{2}=Q A^{2}+O Q^{2}$
$\Rightarrow Q A^{2}=O A^{2}-O Q^{2}$
$\Rightarrow \mathrm{QA}^{2}=5^{2}-3^{2}$
$\Rightarrow Q A^{2}=25^{2}-9^{2}$
$\Rightarrow \mathrm{QA}^{2}=16$
$\Rightarrow Q A=\sqrt{ } 16$
$\Rightarrow \mathrm{QA}=4 \mathrm{~cm}$
By property 2,
$B Q=B P$ (tangent from B)
And,
$A Q=B Q=4 \mathrm{~cm}[\because Q$ is midpoint of $A B]$
$P B=P C=4 \mathrm{~cm}[\because P$ is midpoint of $B C]$
Now,
$B C=B P+P C$
$\Rightarrow B C=4 \mathrm{~cm}+4 \mathrm{~cm}$
$\Rightarrow B C=8 \mathrm{~cm}$
Hence, $B C=8 \mathrm{~cm}$

31. Question

In Fig. 10.93, there are two concentric circles with centre O. PR and PQS are tangents to the inner circle from point plying on the outer circle. If $P R=7.5 \mathrm{~cm}$, then $P S$ is equal to

Fig. 10.93
A. 10 cm
B. 12 cm
C. 15 cm
D. 18 cm

Answer

Given:
$P R=7.5 \mathrm{~cm}$

Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By property $1, \triangle \mathrm{OSQ}$ is right-angled at $\angle \mathrm{OQS}$ (i.e., $\angle O Q S=90^{\circ}$) and $\triangle O P Q$ is right-angled at $\angle O Q P$ (i.e., $\angle O Q P=90^{\circ}$).
$\therefore \mathrm{OQ} \perp \mathrm{PS}$
$\because \mathrm{PO}=\mathrm{OS}$ [radius of circle]
$\therefore \triangle \mathrm{POS}$ is an isosceles triangle
Now,
$\because \triangle \mathrm{POS}$ is an isosceles triangle and OQ is perpendicular to its base
\therefore OQ bisects PS
i.e., $P Q=Q S$

By property 2,
$P R=P Q=7.5 \mathrm{~cm}$ (tangent from P)
Now,
$P S=P Q+Q S$
$\Rightarrow P S=P Q+P Q[\because P Q=Q S]$
$\Rightarrow \mathrm{PS}=7.5 \mathrm{~cm}+7.5 \mathrm{~cm}$
$\Rightarrow P S=15 \mathrm{~cm}$
Hence, PS = 15 cm

32. Question

In Fig. 10.94, if $A B=8 \mathrm{~cm}$ and $\mathrm{PE}=3 \mathrm{~cm}$, then $\mathrm{AE}=$

Fig. 10.94
A. 11 cm
B. 7 cm
C. 5 cm
D. 3 cm

Answer

Given:
$A B=8 \mathrm{~cm}$
$P E=3 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By above property,
$A B=A C=8 \mathrm{~cm}$ (tangent from A)
$P E=C E=3 \mathrm{~cm}$ (tangent from E)

Now,
$A E=A C-C E$
$\Rightarrow A E=8 \mathrm{~cm}-3 \mathrm{~cm}$
$\Rightarrow A E=5 \mathrm{~cm}$
Hence, $\mathrm{AE}=5 \mathrm{~cm}$

33. Question

In Fig. 10.95, PQ and PR are tangents drawn from P to a circle with centre O . If $\angle \mathrm{OPQ}=35^{\circ}$, then

Fig. 10.95
A. $a=30^{\circ}, b=60^{\circ}$
B. $a=35^{\circ}, b=55^{\circ}$
C. $a=40^{\circ}, b=50^{\circ}$
D. $a=45^{\circ}, b=45^{\circ}$

Answer

Given:
$\angle \mathrm{OPQ}=35^{\circ}$
Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 3: The sum of all angles of a triangle $=180^{\circ}$.
By property 1,
$\mathrm{QP}=\mathrm{QR}$ (tangent from Q)
By property 2, $\triangle O P Q$ is right-angled at $\angle O Q P$ (i.e., $\angle O Q P=90^{\circ}$) and $\triangle O R P$ is right-angled at $\angle O R P$ (i.e., $\angle O R P=90^{\circ}$).
$\therefore \mathrm{OQ} \perp \mathrm{QP}$
$O R \perp R P$
Now,
$\angle \mathrm{OQP}=\angle \mathrm{ORP}=90^{\circ}$ [Property 1]
$\mathrm{QP}=\mathrm{QR}$ [Property 2]
$\mathrm{OP}=\mathrm{OP}$ [Given]
$\therefore \triangle \mathrm{OPQ} \cong \triangle \mathrm{OPR}$ By SAS
Hence, $\angle \mathrm{OPQ}=\angle \mathrm{OPR}=35^{\circ} \mathrm{By} \mathrm{CPCTC}$
i.e. $\angle a=35^{\circ}$

By property 3,
$\angle \mathrm{OQP}+\angle \mathrm{OPQ}+\angle \mathrm{QOP}=180^{\circ}$
$\Rightarrow 90^{\circ}+35^{\circ}+\angle \mathrm{QOP}=180^{\circ}$
$\Rightarrow 125^{\circ}+\angle \mathrm{QOP}=180^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=180^{\circ}-125^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=55^{\circ}$
i.e. $\angle b=55^{\circ}$

Hence, $\angle \mathrm{a}=35^{\circ}$ and $\angle \mathrm{b}=55^{\circ}$

34. Question

In Fig. 10.96, if TP and TQ are tangents drawn from an external point T to a circle with centre O such that $\angle \mathrm{TQP}=60^{\circ}$, then $\angle \mathrm{OPQ}=$

Fia. 10.96
A. 25°
B. 30°
C. 40°
D. 60°

Answer

Given:
$\angle T Q P=60^{\circ}$
Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

By property 1,
$T P=T Q($ tangent from $T)$
$\Rightarrow \angle \mathrm{TPQ}=\angle \mathrm{TQP}=60^{\circ}$
By property 2, $\triangle \mathrm{OPT}$ is right-angled at $\angle \mathrm{OPT}$ (i.e., $\angle \mathrm{OPT}=90^{\circ}$) and $\triangle \mathrm{OQT}$ is right-angled at $\angle \mathrm{OQT}$ (i.e., $\angle O Q T=90^{\circ}$).

Now,
$\angle \mathrm{OPQ}=\angle \mathrm{OPT}-\angle \mathrm{TPQ}$
$\Rightarrow \angle \mathrm{OPQ}=90^{\circ}-60^{\circ}$
$\Rightarrow \angle \mathrm{OPQ}=30^{\circ}$
Hence, $\angle \mathrm{OPQ}=30^{\circ}$

35. Question

In Fig. 10.97, the sides $A B, B C$ and $C A$ of triangle $A B C$, touch a circle at P, Q and R respectively. If $P A$ $=4 \mathrm{~cm}, B P=3 \mathrm{~cm}$ and $A C=11 \mathrm{~cm}$, then length of $B C$ is

Fig. 10.97
A. 11 cm
B. 10 cm
C. 14 cm
D. 15 cm

Answer

Given:
$\mathrm{PA}=4 \mathrm{~cm}$
$B P=3 \mathrm{~cm}$
$A C=11 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By above property,
$A P=A R=4 \mathrm{~cm}$ (tangent from A)
$B P=B Q=3 \mathrm{~cm}$ (tangent from B)
$\mathrm{QC}=\mathrm{RC}$ (tangent from C)
Clearly,
$R C=A C-A R$
$\Rightarrow R C=11 \mathrm{~cm}-4 \mathrm{~cm}$
$\Rightarrow \mathrm{RC}=7 \mathrm{~cm}$
Now,
$B C=B Q+Q C$
$\Rightarrow B C=B Q+R C[\because Q C=R C]$
$\Rightarrow B C=3 \mathrm{~cm}+7 \mathrm{~cm}$
$\Rightarrow B C=10 \mathrm{~cm}$
Hence, $B C=10 \mathrm{~cm}$

36. Question

In Fig. 10.98, a circle touches the side DF of AEDF át H and touches ED and EF produced at K and M respectively. If $\mathrm{EK}=9 \mathrm{~cm}$, then the perimeter of $\triangle E D F$ is

Fig. 10.98
A. 18 cm
B. 13.5 cm
C. 12 cm
D. 9 cm

Answer

Given:
$\mathrm{EK}=9 \mathrm{~cm}$

Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By above property,
$\mathrm{EM}=\mathrm{EK}=9 \mathrm{~cm}$ (tangent from E)
DK $=$ DH (tangent from D$)$
$\mathrm{FM}=\mathrm{FH}$ (tangent from F)
Now,
Perimeter of $\triangle E D F=E D+D F+F E$
\Rightarrow Perimeter of $\Delta E D F=(E K-K D)+(D H+H F)+(E M-M F)$
$[\because E D=E K-K D$
$D F=D H+H F$
$F E=E M-M F]$
\Rightarrow Perimeter of $\Delta \mathrm{EDF}=\mathrm{EK}-\mathrm{KD}+\mathrm{DH}+\mathrm{HF}+\mathrm{EM}-\mathrm{MF}$
\Rightarrow Perimeter of $\triangle E D F=E K-D H+D H+H F+E M-H F[\because D K=D H$ and $F M=F H]$
\Rightarrow Perimeter of $\Delta E D F=E K+E M$
\Rightarrow Perimeter of $\triangle E D F=9 \mathrm{~cm}+9 \mathrm{~cm}$
\Rightarrow Perimeter of $\triangle E D F=18 \mathrm{~cm}$
Hence, Perimeter of $\triangle E D F=18 \mathrm{~cm}$

37. Question

In Fig, $D E$ and $D F$ are tangents from an external point D to a circle with centre A. If $D E=5 \mathrm{~cm}$ and $D E \perp D F$, then the radius of the circle is

A. 3 cm
B. 5 cm
C. 4 cm
D. 6 cm

Answer
Given:
$D E=5 \mathrm{~cm}$
$D E \perp D F$

Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 3: Sum of all angles of a quadrilateral $=360^{\circ}$.
By property 1,
$E F=E D=5 \mathrm{~cm}$ (tangent from E)
And,
$\mathrm{AE}=\mathrm{AF}$ [radius]
By property 2, $\angle \mathrm{AED}=90^{\circ}$ and $\angle \mathrm{AFD}=90^{\circ}$.
Also,
$\angle E D F=90^{\circ}[\because E D \perp E F]$
By property 3,
$\angle A E D+\angle A F D+\angle E D F+\angle E A F=360^{\circ}$
$\Rightarrow 90^{\circ}+90^{\circ}+90^{\circ}+\angle E A F=360^{\circ}$
$\Rightarrow \angle E A F=360^{\circ}-\left(90^{\circ}+90^{\circ}+90^{\circ}\right)$
$\Rightarrow \angle E A F=360^{\circ}-270^{\circ}$
$\Rightarrow \angle E A F=90^{\circ}$
\because All angles are equal and adjacent sides are equal \therefore AEDF is a square.
Hence, all sides are equal
$\Rightarrow A E=A F=E D=E F=5 \mathrm{~cm}$
Hence, Radius of circle $=5 \mathrm{~cm}$

38. Question

In Fig. 10.100, a circle with centre O is inscribed in a quadrilateral $A B C D$ such that, it touches sides $B C, A B, A D$ and $C D$ at points P, Q, R and S respectively. If $A B=29 \mathrm{~cm}, A D=23 \mathrm{~cm}, \angle B=90^{\circ}$ and $D S$ $=5 \mathrm{~cm}$, then the radius of the circle (in cm) is

Fig. 10.100
A. 11
B. 18
C. 6
D. 15

Answer

Given:
$A B=29 \mathrm{~cm}$
$A D=23 \mathrm{~cm}$
$\angle B=90^{\circ}$
$D S=5 \mathrm{~cm}$
Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 3: Sum of all angles of a quadrilateral $=360^{\circ}$.
By property 1,
$B P=B Q$ (tangent from B)
$\mathrm{DS}=\mathrm{DR}=5 \mathrm{~cm}$ (tangent from D)
$A R=A Q$ (tangent from A)
Also,
$O Q=O P$ (radius)
By property $2, \triangle O Q B$ is right-angled at $\angle O Q B$ (i.e., $\angle O Q B=90^{\circ}$) and $\triangle O P B$ is right-angled at $\angle O P B$ (i.e., $\angle O P B=90^{\circ}$).

Now by property 3,
$\angle \mathrm{PBC}+\angle \mathrm{BQO}+\angle \mathrm{QOP}+\angle \mathrm{OPB}=360^{\circ}$
$\Rightarrow 90^{\circ}+90^{\circ}+\angle Q O P+90^{\circ}=360^{\circ}$
$\Rightarrow 270^{\circ}+\angle \mathrm{QOP}=360^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=360^{\circ}-270^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=90^{\circ}$
\because adjacent sides (i.e., $\mathrm{BP}=\mathrm{BQ}$ and $\mathrm{OQ}=\mathrm{OP}$) are equal and all angles are 90°
\therefore quadrilateral OPBQ is a square
Now,
$A D=23 \mathrm{~cm}$
$\Rightarrow A R+R D=23 \mathrm{~cm}[\because A D=A R+R D]$
$\Rightarrow A R+5 \mathrm{~cm}=23 \mathrm{~cm}$
$\Rightarrow A R=23 \mathrm{~cm}-5 \mathrm{~cm}$
$\Rightarrow A R=18 \mathrm{~cm}$
$\Rightarrow A Q=A R=18 \mathrm{~cm}$
Now,
$A B=29 \mathrm{~cm}$
$\Rightarrow A Q+Q B=29 \mathrm{~cm}[\because A D=A R+R D]$
$\Rightarrow 18 \mathrm{~cm}+\mathrm{QB}=29 \mathrm{~cm}$
$\Rightarrow \mathrm{QB}=29 \mathrm{~cm}-18 \mathrm{~cm}$
$\Rightarrow \mathrm{QB}=11 \mathrm{~cm}$
\because OPBQ is a square
$\therefore \mathrm{OP}=\mathrm{BQ}=11 \mathrm{~cm}$
Hence, radius $=11 \mathrm{~cm}$

39. Question

In a right triangle $A B C$, right angled at $B, B C=12 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$. The radius of the circle inscribed in the triangle (in cm) is
A. 4
B. 3
C. 2
D. 1

Answer

Given:
$B C=12 \mathrm{~cm}$
$A B=5 \mathrm{~cm}$

Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 3: Sum of all angles of a quadrilateral $=360^{\circ}$.
By property 1,
$A P=A Q($ Tangent from $A)$
$B P=B R($ Tangent from B)
$C R=C Q($ Tangent from C)
$\because A B C$ is a right-angled triangle,. by Pythagoras Theorem
$A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow A C^{2}=5^{2}+12^{2}$
$\Rightarrow A C^{2}=25+144$
$\Rightarrow A C^{2}=169$
$\Rightarrow A C=\sqrt{ } 169$
$\Rightarrow A C=13 \mathrm{~cm}$
Clearly,
$A Q+Q C=A C=13 \mathrm{~cm}$
$\Rightarrow A P+R C=13 \mathrm{~cm}[\because A Q=A P$ and $Q C=R C]$

Also,
$A B+B C=5 \mathrm{~cm}+12 \mathrm{~cm}=17 \mathrm{~cm}$
$\Rightarrow A P+P B+B R+R C=17 \mathrm{~cm}[\because A B=A P+P B$ and $B C=B R+R C]$
$\Rightarrow A P+R C+P B+B R=17 \mathrm{~cm}$
$\Rightarrow 13 \mathrm{~cm}+B R+B R=17 \mathrm{~cm}[\because A P+R C=10 \mathrm{~cm}$ and $P B=B R]$
$\Rightarrow 13 \mathrm{~cm}+2 \mathrm{BR}=17 \mathrm{~cm}$
$\Rightarrow 2 B R=17 \mathrm{~cm}-13 \mathrm{~cm}=4 \mathrm{~cm}$
$\Rightarrow \mathrm{BR}=\frac{4}{2} \mathrm{~cm}$
$\Rightarrow B R=2 \mathrm{~cm}$
Now,
$\angle \mathrm{BPO}=90^{\circ}$ [By property 2]
$\angle B R O=90^{\circ}$ [By property 2]
$\angle \mathrm{PBM}=90^{\circ}$ [Given]
Now by property 3,
$\angle \mathrm{BPO}+\angle \mathrm{BRO}+\angle \mathrm{PBM}+\angle \mathrm{ROP}=360^{\circ}$
$\Rightarrow \angle R O P=360^{\circ}-(\angle B P O+\angle B R O+\angle P B M)$
$\Rightarrow \angle \mathrm{ROP}=360^{\circ}-\left(90^{\circ}+90^{\circ}+90^{\circ}\right)$
$\Rightarrow \angle \mathrm{ROP}=360^{\circ}-270^{\circ}$
$\Rightarrow \angle \mathrm{ROP}=90^{\circ}$
Now, $\because \angle R O P=90^{\circ}$ and $B P=B R$ which are adjacent sides
\therefore Quadrilateral PBRO is a square
$\Rightarrow \mathrm{PO}=\mathrm{BR}=2 \mathrm{~cm}$
Hence, Radius $=2 \mathrm{~cm}$

40. Question

Two circles touch each other externally at P. $A B$ is a common tangent to the circle touching them at A and B. The value of $\angle A P B$ is
A. 30°
B. 45°
C. 60°
D. 90°

Answer

Draw a tangent from a point T on B to P.
Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

Property 2: Sum of all angles of a triangle $=180^{\circ}$.
By property 1,
$T A=T P($ tangent from $T)$
$T B=T P($ tangent from T)
Now in \triangle ATP,
$T A=T P$
$\therefore \angle \mathrm{APT}=\angle \mathrm{PAT}$
And in $\triangle B T P$,
$T B=T P$
$\therefore \angle \mathrm{BPT}=\angle \mathrm{PBT}$
By property 2,

$$
\begin{aligned}
& \angle \mathrm{APB}+\angle \mathrm{PBA}+\angle \mathrm{PAB}=180^{\circ} \\
& \Rightarrow \angle \mathrm{APB}+\angle \mathrm{PBT}+\angle \mathrm{PAT}=180^{\circ} \\
& \Rightarrow \angle \mathrm{APB}+\angle \mathrm{BPT}+\angle \mathrm{APT}=180^{\circ}[\because \angle \mathrm{APT}=\angle \mathrm{PAT} \text { and } \angle \mathrm{BPT}=\angle \mathrm{PBT}] \\
& \Rightarrow \angle \mathrm{APB}+\angle \mathrm{APB}=180^{\circ}[\because \angle \mathrm{APB}=\angle \mathrm{BPT}+\angle \mathrm{APT}] \\
& \Rightarrow 2 \angle \mathrm{APB}=180^{\circ} \\
& \Rightarrow \angle \mathrm{APB}=\frac{180^{\circ}}{2} \\
& \Rightarrow \angle \mathrm{APB}=90^{\circ}
\end{aligned}
$$

Hence, $\angle A P B=90^{\circ}$

41. Question

In Fig. 10.101, $P Q$ and $P R$ are two tangents to a circle with centre O. If $\angle Q P R=46^{\circ}$, then $\angle Q O R$ equals

Fig. 10.101
A. 67°
B. 134°
C. 44°
D. 46°

Answer

Given:
$\angle Q P R=46^{\circ}$
Property 1: The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency.

Property 2: Sum of all angles of a quadrilateral $=360^{\circ}$.
By property $1, \triangle \mathrm{OQP}$ is right-angled at $\angle O Q P$ (i.e., $\angle O Q P=90^{\circ}$) and $\triangle O R P$ is right-angled at $\angle O R P$ (i.e., $\angle O R P=90^{\circ}$).

Now by property 2,
$\angle \mathrm{OQP}+\angle \mathrm{ORP}+\angle \mathrm{QOR}+\angle \mathrm{QPR}=360^{\circ}$
$\Rightarrow \angle \mathrm{QOR}=360^{\circ}-(\angle \mathrm{OQP}+\angle \mathrm{ORP}+\angle \mathrm{QPR})$
$\Rightarrow \angle \mathrm{ROP}=360^{\circ}-\left(90^{\circ}+90^{\circ}+46^{\circ}\right)$
$\Rightarrow \angle \mathrm{ROP}=360^{\circ}-226^{\circ}$
$\Rightarrow \angle \mathrm{ROP}=134^{\circ}$
Hence, $\angle R O P=134^{\circ}$

42. Question

In Fig. 10.102, QR is a common tangent to the given circles touching externally at the point T . The tangent at T meets $Q R$ at P. If PT $=3.8 \mathrm{~cm}$, then the length of $Q R$ (in cm) is

Fig. 10.102
A. 3.8
B. 7.6
C. 5.7
D. 1.9

Answer

Given:
$\mathrm{PT}=3.8 \mathrm{~cm}$
Property 1: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By property 1,
PQ $=$ PT (Tangent from P)
PR = PT (Tangent from P)
Now,
$Q R=P Q+P R$
$\Rightarrow \mathrm{QR}=\mathrm{PT}+\mathrm{PT}$
$\Rightarrow Q R=3.8 \mathrm{~cm}+3.8 \mathrm{~cm}$
$\Rightarrow Q R=7.6 \mathrm{~cm}$
Hence, QR = 7.6 cm

43. Question

In Fig. 10.103, a quadrilateral $A B C D$ is drawn to circumscribe a circle such that its sides $A B, B C, C D$ and $A D$ touch the circle at P, Q, R and S respectively. If $A B=x c m, B C=7 \mathrm{~cm}, C R=3 \mathrm{~cm}$ and $A S=5$ cm , then $\mathrm{x}=$

Fig. 10.103
A. 10
B. 9
C. 8
D. 7

Answer

Given:
$A B=x c m$
$B C=7 \mathrm{~cm}$
$C R=3 \mathrm{~cm}$
AS $=5 \mathrm{~cm}$
Property: If two tangents are drawn to a circle from one external point, then their tangent segments (lines joining the external point and the points of tangency on circle) are equal.

By the above property,
$A P=A S$ (tangent from A)
$B P=B Q$ (tangent from B)
$C R=C Q$ (tangent from C)
$D R=D S$ (tangent from D)
Clearly,
$\mathrm{QB}=\mathrm{CB}-\mathrm{CQ}$
$\Rightarrow \mathrm{QB}=\mathrm{CB}-\mathrm{CR}[\because \mathrm{CQ}=\mathrm{CR}]$
$\Rightarrow \mathrm{QB}=7 \mathrm{~cm}-3 \mathrm{~cm}$
$\Rightarrow \mathrm{QB}=4 \mathrm{~cm}$
Now,
$A B=A P+P B$
$\Rightarrow A B=A S+Q B$
$\Rightarrow A B=5 \mathrm{~cm}+4 \mathrm{~cm}$
$\Rightarrow A B=9 \mathrm{~cm}$
$\Rightarrow A B=x=9 \mathrm{~cm}$
Hence, $x=9 \mathrm{~cm}$

