ICSE Board

 Class X

 Class X
 Mathematics

Board Paper 2019
(Two hours and a half)
Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes.

This time is to be spent in reading the question paper.
The time given at the head of this Paper is the time allowed for writing the answers.

Attempt all questions from Section A and any four questions from Section B.
All working, including rough work, must be clearly shown and must be done on the same sheet as the rest of the answer.

Omission of essential working will result in loss of marks.

The intended marks for questions or parts of questions are given in brackets [].

Mathematical tables are provided.

SECTION A (40 Marks)

Attempt all questions from this Section.

Question 1

(a) Solve the following in equation and write down the solution set: [3]
$11 x-4<15 x+4 \leq 13 x+14, x \in W$

Represent the solution on a real number line.
Ans. The given inequality is:
$11 x-4<15 x+4 \leq 13 x+14$
which forms two cases that are:
Case $1: 15 x+4>11 x-4$

Case2: $15 x+4 \leq 13 x+14$

Solving the case 1, we have
$15 x+4>11 x-4$
$\Rightarrow 15 x-11 x>-4-4$
$\Rightarrow 4 x>-8$
$\Rightarrow x>\frac{-8}{4}$
$\therefore x>-2$

Solving the case 2, we get
$15 x+4 \leq 13 x+14$
$\Rightarrow 15 x-13 x \leq 14-4$
$\Rightarrow 2 x \leq 10$
$\Rightarrow x \leq \frac{10}{2}$
$\therefore x \leq 5$

So, we get $\mathrm{x}>-2$ and $\mathrm{x} \leq 5$
$\Rightarrow-2<x \leq 5$
Since $\mathrm{x} \in \mathrm{w}$, Therefore, $\mathrm{x}=\{0,1,2,3,4,5\}$

(b) A man invests Rs. 4500 in shares of a company which is paying $\mathbf{7 . 5 \%}$ dividend. If Rs.

100 shares are available at a discount of $\mathbf{1 0 \%}$. Find: [3]
(i) Number of shares he purchases.

(ii) His annual income.

Ans. Given,

Total amount of investment = Rs. 4500
Dividend (\%) = 7.5\%
Face value = Rs. 100
Discount offered (\%) $=10 \%$

$$
\begin{aligned}
\text { Market Value of share } & =100-10 \% \text { of } 100 \\
& =100-10 \\
& =\text { Rs. } 90
\end{aligned}
$$

We know that, Numbers of share $=\frac{\text { Investment }}{\text { Market value }}$

$$
=\frac{4500}{90}=50 \text { shares }
$$

$$
\text { Also, Annual Income } \begin{aligned}
& =\frac{\text { Number of share } \times \text { Dividend percent } \times \text { Face value }}{100} \\
& =\frac{50 \times 7.5 \times 100}{100} \\
& =\text { Rs. } 375.0
\end{aligned}
$$

Hence, the total number of shares purchased is 50 and the annual income is Rs. 375
(c) In class of 40 students, marks obtained by the students a class test (out of 10) are given below,

Marks	$\mathbf{1}$	2	3	4	5	6	7	8	9	10
Number of students	1	2	3	3	6	10	5	4	3	3

Calculate the following for the given distribution: [4]

(i) Median

(ii) Mode

Ans. Let the marks obtained be represented by x and the number of students be represented by f

Then, we can arrange the data as:

Marks (x)	Number of students (f)	$(f x)$
1	1	1
2	2	4
3	3	9
4	3	12
5	6	30
6	10	60
7	5	35
8	4	32
9	3	27
10	$\sum f=40$	$\sum f x=240$
Total		

i. We know, Mean $=\frac{\sum f x}{\sum f}$

$$
=\frac{240}{40}=6
$$

ii. Mode $=$ Class with highest frequency

Here in the above table, we see 10 is the highest frequency
Hence, Mode $=6$

Question 2

(a) Using the factor theorem, show that ($\mathbf{x}-2$) is a factor of $x^{3}+x^{2}-4 x-4$, Hence, factorise the polynomial completely.

Ans. Let's take the given polynomial be $\mathrm{P}(\mathrm{x})$.
We have $P(x)=x^{3}+x^{2}-4 x-4$

According to question, $(\mathrm{x}-2)$ is a factor of given polynomial
We know that, under factor theorem, x -a is a factor of $\mathrm{P}(\mathrm{x})$ only if $\mathrm{P}(\mathrm{a})=0$

So, to prove that, we substitute the value of x by 2

$$
\begin{aligned}
& P(2)=2^{3}+2^{2}-4 \times 2-4 \\
& P(2)=8+4-8-4 \\
& P(2)=0
\end{aligned}
$$

Therefore, $\mathrm{x}-2$ is a factor of $\mathrm{P}(\mathrm{x})$

Now, factorising the polynomial, we get
$\mathrm{x}^{3}+\mathrm{x}^{2}-4 \mathrm{x}-4$
$=\mathrm{x}^{3}-4 x+x^{2}-4$
$=x\left(x^{2}-4\right)+1\left(x^{2}-4\right) \quad\left[\because\left(a^{2}-b^{2}\right)=(a+b)(a-b)\right]$
$=\left(x^{2}-4\right)(x+1)$
$=(x+2)(x-2)(x+1)$
(b) Prove that: $(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1$ [3]

Ans. Given, L.H.S $=(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)$

$$
\begin{aligned}
& \Rightarrow\left(\frac{1}{\operatorname{Sin} \theta}-\operatorname{Sin} \theta\right)\left(\frac{1}{\operatorname{Cos} \theta}-\operatorname{Cos} \theta\right)\left(\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}+\frac{\operatorname{Cos} \theta}{\operatorname{Sin} \theta}\right) \\
& =\left(\frac{1-\operatorname{Sin}^{2} \theta}{\operatorname{Sin} \theta}\right)\left(\frac{1-\operatorname{Cos}^{2} \theta}{\operatorname{Cos} \theta}\right)\left(\frac{\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta}{\operatorname{Sin} \theta \cdot \operatorname{Cos} \theta}\right) \\
& =\frac{\operatorname{Cos}^{2} \theta}{\operatorname{Sin} \theta} \cdot \frac{\operatorname{Sin}^{2} \theta}{\operatorname{Cos} \theta} \cdot \frac{1}{\operatorname{Sin} \theta \cdot \operatorname{Cos} \theta} \\
& =1 \\
& =\text { R.H.S }
\end{aligned}
$$

Hence, L.H.S = R.H. S proved.
(c) In an Arithmetic Progression (A.P.) the fourth and sixth terms are 8 and 14 respectively, Find the:[4]
(i) First term
(ii) Common difference
(iii) Sum of the first 20 terms

Ans.
Let the first term of A.P be ' a ' and common difference be ' d '.

Then using formula $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$ to get $n^{\text {th }}$ term, we get

$$
\begin{align*}
& \mathrm{a}_{4}=\mathrm{a}+(4-1) \mathrm{d} \\
& \Rightarrow 8=\mathrm{a}+3 \mathrm{~d} . \ldots \tag{i}
\end{align*}
$$

[Given: Fourth term is 8 and sixth term is 14]

Also,
$a_{6}=a+(6-1) d$
$\Rightarrow 14=\mathrm{a}+5 \mathrm{~d}$.

Now, solving (i) and (ii) simultaneously, we get

$$
\begin{aligned}
& a+3 d-a-5 d=8-14 \\
& \Rightarrow-2 d=-6 \\
& \therefore d=3
\end{aligned}
$$

Putting value of d in (i), we get
$a+3 \times 3=8$
$\Rightarrow \mathrm{a}+9=8$
$\therefore \mathrm{a}=-1$

We know that, the sum of first n terms $=\frac{n}{2}[2 a+(n-1) d]$

So, the sum of first 20 terms $S_{20}=\frac{20}{2}[2(-1) *(20-1) 3]$
$=10(-2+19 \times 3)$
$=10(-2+57)$
$=10 \times 55$
$=550$

Question 3

(a) Simplify: [3]
$\operatorname{Sin} \mathrm{A}\left[\begin{array}{cc}\operatorname{Sin} \mathrm{A} & -\operatorname{Cos} \mathrm{A} \\ \operatorname{Cos} \mathrm{A} & \operatorname{Sin} \mathrm{A}\end{array}\right]+\operatorname{Cos} \mathrm{A}\left[\begin{array}{cc}\operatorname{Cos} \mathrm{A} & \operatorname{Sin} \mathrm{A} \\ -\operatorname{Sin} \mathrm{A} & \operatorname{Cos} \mathrm{A}\end{array}\right]$

Ans.

$$
\begin{aligned}
& \operatorname{Sin} \mathrm{A}\left[\begin{array}{cc}
\operatorname{Sin} \mathrm{A} & -\operatorname{Cos} \mathrm{A} \\
\operatorname{Cos} \mathrm{~A} & \operatorname{Sin} \mathrm{~A}
\end{array}\right]+\operatorname{Cos} \mathrm{A}\left[\begin{array}{cc}
\operatorname{Cos} \mathrm{A} & \operatorname{Sin} \mathrm{~A} \\
-\operatorname{Sin} \mathrm{A} & \operatorname{Cos} \mathrm{~A}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\operatorname{Sin}^{2} \mathrm{~A} & -\operatorname{Sin} \mathrm{A} \cdot \operatorname{Cos} \mathrm{~A} \\
\operatorname{Sin} \mathrm{~A} \cdot \operatorname{Cos} \mathrm{~A} & \operatorname{Sin}^{2} \mathrm{~A}
\end{array}\right]+\left[\begin{array}{cc}
\operatorname{Cos}^{2} \mathrm{~A} & \operatorname{Cos} \mathrm{~A} \cdot \operatorname{Sin} \mathrm{~A} \\
-\operatorname{Cos} \mathrm{A} \cdot \operatorname{Sin} \mathrm{~A} & \operatorname{Cos}^{2} \mathrm{~A}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\operatorname{Sin}^{2} \mathrm{~A}+\operatorname{Cos}^{2} \mathrm{~A} & -\operatorname{Sin} \mathrm{A} \cdot \operatorname{Cos} \mathrm{~A}+\operatorname{Cos} \mathrm{A} \cdot \operatorname{Sin} \mathrm{~A} \\
\operatorname{Sin} \mathrm{~A} \cdot \operatorname{Cos} \mathrm{~A}+(-\operatorname{Cos} \mathrm{A} \cdot \operatorname{Sin} \mathrm{~A}) & \operatorname{Sin}^{2} \mathrm{~A}+\operatorname{Cos}^{2} \mathrm{~A}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\operatorname{Sin} \mathrm{A} \cdot \operatorname{Cos} \mathrm{~A}-\operatorname{Cos} \mathrm{A} \cdot \operatorname{Sin} \mathrm{~A}) & -\operatorname{Sin} \mathrm{A} \cdot \operatorname{Cos} \mathrm{~A}+\operatorname{Cos} \mathrm{A} \cdot \operatorname{Sin} \mathrm{~A}
\end{array}\right]\left[\because \operatorname{Sin}^{2} \mathrm{~A}+\operatorname{Cos}^{2} \mathrm{~A}=1\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

(b) M and N are two points on the X axis and Y axis respectively. $P(3,2)$ divides the line

 segment MN in the ratio $2: 3$. Find: [3](i) The coordinates of M and N
(ii) Slope of the line MN.

Ans.

Let the co ordinates of M and N be $(\mathrm{a}, 0)$ and $(0, b)$ on x -axis and y - axis respectively
We know that,
The co ordinates of the point which divides the line segment joining $\left(x_{1}, y_{1}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$ internally in the ratio m:n is $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

According to question, $\mathrm{P}(3,2)$ divides the line joining M and N internally in the ratio 2:3, Thus, using the above formula, we get
$\left(\frac{3 a}{5}, \frac{2 b}{5}\right)=(3,2)$

So,
$\frac{3 a}{5}=3$
$\Rightarrow \mathrm{a}=\frac{3 \times 5}{3}$
$\therefore \mathrm{a}=5$
And
$\frac{2 b}{5}=2$
$\Rightarrow \mathrm{b}=\frac{2 \times 5}{2}$
$\therefore \mathrm{b}=5$
Therefore, the required coordinates of M and N are $(5,0)$ and $(0,5)$

Now,
$\mathrm{M}(5,0)$ and $\mathrm{N}(0,5)$
We know, slope of the line $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Therefore, Slope of line $M N=\frac{5-0}{0-5}=\frac{5}{-5}=-1$
(c) A solid metallic sphere of radius $\mathbf{6 c m}$ is melted and made into a solid cylinder of height 32 cm . Find the: [4]
(i) Radius of the cylinder
(ii) Curved surface area of the cylinder

Take $\pi=3.1$

Ans.

(i) Given, radius of metallic sphere $(\mathrm{r})=6 \mathrm{~cm}$

We know, volume of sphere $=\frac{4}{3} \pi r^{3}$
\therefore Volume of metallic sphere $=\frac{4}{3} \pi(6)^{3}$

Let r_{1} be radius of the cylinder
Height of the cylinder (h) $=32 \mathrm{~cm}$

We know, volume of cylinder $=\pi r^{2} h$
\therefore Volume of given cylinder $=\pi r_{1}^{2} \times 32$

Now, according to question,

Volume of sphere $=$ Volume of cylinder

$$
\begin{aligned}
& \Rightarrow \frac{4}{3} \pi(6)^{3}=\pi r_{1}^{2} \times 32 \\
& \Rightarrow \frac{4}{3} \times 216=32 r_{1}^{2} \\
& \Rightarrow \frac{4 \times 216}{3 \times 32}=r_{1}^{2} \\
& \Rightarrow r_{1}^{2}=9 \\
& \therefore r_{1}=3
\end{aligned}
$$

Hence, the radius of the cylinder is 3 cm
(ii.) Height of cylinder (h) $=32 \mathrm{~cm}$ and radius(r) $=3 \mathrm{~cm}$

So, The curved surface area of cylinder $=2 \pi r h$

$$
\begin{aligned}
& =2 \times 3.1 \times 3 \times 32 \\
& =595.2
\end{aligned}
$$

Question 4

(a) The following numbers, $K+3, K+2,3 K-7$ and $2 K-3$ are in proportion. Find K. [3]

Ans. Given that, $\mathrm{K}+3, \mathrm{~K}+2,3 \mathrm{~K}-7$ and $2 \mathrm{~K}-3$ are in proportion.
$\therefore \frac{\mathrm{K}+3}{\mathrm{~K}+2}=\frac{3 \mathrm{~K}-7}{2 K-3}$
$\Rightarrow(\mathrm{K}+3)(2 \mathrm{~K}-3)=(3 \mathrm{~K}-7)(\mathrm{K}+2)$
$\Rightarrow 2 \mathrm{~K}^{2}-3 \mathrm{~K}+6 \mathrm{~K}-9=3 \mathrm{~K}^{2}+6 \mathrm{~K}-7 \mathrm{~K}-14$
$\Rightarrow 2 \mathrm{~K}^{2}+3 \mathrm{~K}-9=3 \mathrm{~K}^{2}-\mathrm{K}-14$
$\Rightarrow \mathrm{K}^{2}-4 \mathrm{~K}-5=0$
$\Rightarrow \mathrm{K}^{2}-5 \mathrm{~K}+\mathrm{K}-5=0$
$\Rightarrow(\mathrm{K}-5)(\mathrm{K}+1)=0$
$\therefore \mathrm{K}=5 o r-1$
(b) Solve for \mathbf{x} the quadratic equation $x^{2}-4 x-8=0$. Give your answer correct to three significant figures. [3]

Ans.
Given equation, $\mathrm{x}^{2}-4 \mathrm{x}-8=0$

Comparing it with the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, we get $a=1, b=-4$ and $c=-8$

$$
\begin{aligned}
\therefore b^{2}-4 a c & =(-4)^{2}-4 \times 1 \times(-8) \\
& =16+32 \\
& =48
\end{aligned}
$$

Substituting this value in the formula $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
We get,
$x=\frac{-(-4) \pm \sqrt{48}}{2 \times 1}$
$\Rightarrow x=\frac{4 \pm 4 \sqrt{3}}{2}$
$\Rightarrow x=2 \pm 2 \sqrt{3}$
$\Rightarrow x=2 \pm 2 \times 1.732$
$\Rightarrow x=2 \pm 3.464$
$\therefore x=5.464$ or -1.464
(c) Use ruler and compass only for answering this question. Draw a circle of radius 4 cm . Mark the centre as O. Mark a point P outside the circle at a distance of 7 cm from the centre, Construct two tangents to the circle from the external point P. Measure and write down the length of any one tangent.

Ans. Steps for construction are as below:
i. Take measure 4 cm in compass and draw a circle, with center as O .
ii. Draw a straight line from O to P , such that $\mathrm{OP}=7 \mathrm{~cm}$
iii. Now find the midpoint of OP by drawing a perpendicular bisector
iv. Mark the midpoint as X
v. Take measure of XO in the compass and cut arcs at S and T on the Circle
vi. Join PS and PT
vii. Measure of PS comes out to be 5.74 cm

SECTION B (40 Marks)

Attempt any four questions from this Section.

Question 5

(a) There are 25 discs numbered 1 to 25 . They are put in a closed box and shaken thoroughly. A disc is drawn at random from the box. [3]

Find the probability that the number on the disc is:
(i) An odd number
(ii) Divisible by 2 and 3 both.
(iii) A number less than 16.

Ans.
According to question,
Total number of discs numbered 1 to $25=25$
So, the number of possible outcomes in the sample space is $n(S)=25$
We know, Probability of an event $=\frac{\text { Number of favourable outcomes }}{\text { Total number of possible outcomes }}$
i. Let A be the event of getting an odd number
$\therefore \mathrm{A}=\{1,3,5,7,9,11,13,15,17,19,21,23,25\}$
$\therefore \mathrm{n}(\mathrm{A})=13$

Therefore, the probability of getting an odd number $=\frac{n(A)}{n(S)}=\frac{13}{25}$
ii. Let B be the event of getting a number divisible by 2 and 3 . To get the numbers which are divisible by 2 and 3 both, we need to find the numbers which are divisible by 6 .
$\therefore B=\{6,12,18,24\}$
$\therefore \mathrm{n}(\mathrm{B})=4$

Therefore, the probability of getting an odd number $=\frac{n(B)}{n(S)}=\frac{4}{25}$
iii. Let C be the event of getting a number less than 16 .
$\therefore \mathrm{C}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$
$\therefore \mathrm{n}(\mathrm{C})=15$

Therefore, the probability of getting a number less than $16=\frac{\mathrm{n}(\mathrm{C})}{\mathrm{n}(\mathrm{S})}=\frac{15}{25}=\frac{3}{5}$
(b) Rekha opened a recurring deposit account for $\mathbf{2 0}$ months. The rate of interest is $\mathbf{9 \%}$ per annum and Rekha receives Rs. 441 as interest at the time of maturity. Find the amount Rekha deposited each month.

Ans.

Given, Rate of interest given by bank (r) $=9 \%$
Time period (n) $=20$ months
Interest at the time of maturity $=$ Rs. 441

Let, the principle deposited every month be P

According to question,
$\mathrm{P} \frac{\mathrm{n}(\mathrm{n}+1)}{2} \times \frac{\mathrm{r}}{12 \times 100}=441$
$\Rightarrow \mathrm{P} \frac{20(20+1)}{2} \times \frac{9}{1200}=441$
$\Rightarrow \mathrm{P} \frac{20 \times 21}{2} \times \frac{9}{1200}=441$
$\Rightarrow \mathrm{P} \times 1.575=441$
$\therefore \mathrm{P}=280$

Therefore, the amount deposited by Rekha each month is Rs 280 .
(c) Use a graph sheet for this question. [4]

Take $1 \mathrm{~cm}=1$ unit along both x and y axis.
(i) Plot the following points:
$\mathrm{A}(0,5), \mathrm{B}(\mathbf{3}, 0), \mathrm{C}(1,0)$, and $\mathrm{D}(1,-5)$
(ii) Reflect the points B, C, and D on the y axis and name them as B^{\prime}, C^{\prime} and D^{\prime} respectively.
(iii) Write down the coordinates of B^{\prime}, C^{\prime} and D^{\prime}.
(iv) Join the points $A, B, C, D, D^{\prime}, C^{\prime}, B^{\prime}, A$ in order and give a name to the closed figure $\mathbf{A B C D D}{ }^{\prime} \mathbf{C}^{\prime} \mathbf{B}$ '.

Ans.

Question 6

(a) In the given figure $\angle \mathbf{P Q R}=\angle \mathbf{P S T}=90^{\circ}, \mathbf{P Q}=5 \mathrm{~cm}$ and $\mathbf{P S}=\mathbf{2} \mathbf{~ c m}$.
(i) Prove that $\triangle P Q R=\triangle P S T$
(ii) Find Area of $\triangle P Q R$: Area of quadrilateral SRQT.

Ans.

Given, $\mathrm{PQ}=5 \mathrm{~cm}$ and $\mathrm{PS}=2 \mathrm{~cm}$
(i). Here, in $\triangle P Q R$ and $\triangle P S T$
$\angle \mathrm{PQR}=\angle \mathrm{PST}=90^{\circ}$
And $\angle \mathrm{RPQ}=\angle \mathrm{SPT}[\because$ Being common angle $]$
$\therefore \triangle \mathrm{PQR} \sim \triangle \mathrm{PST} \quad$ [Being AA similarity]
So, $\frac{\mathrm{PQ}}{\mathrm{PS}}=\frac{\mathrm{QR}}{\mathrm{ST}}=\frac{\mathrm{PR}}{\mathrm{PT}}=\frac{5}{2}$
$\therefore \frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle P S T)}=\frac{5^{2}}{2^{2}}=\frac{25}{4}$
$\therefore \operatorname{ar}(\triangle P S T)=\frac{4}{25} \operatorname{ar}(\triangle P Q R)$.
(ii)
$\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle P S T)}=\frac{5^{2}}{2^{2}}=\frac{25}{4}$
$\frac{\operatorname{ar}(\triangle P Q R)-\operatorname{ar}(\triangle P S T)}{\operatorname{ar}(\triangle P S T)}=\frac{25-4}{4}=\frac{21}{4}$
$\frac{\operatorname{ar}(\square S R Q T)}{\operatorname{ar}(\triangle P S T)}=\frac{21}{4}$
$\frac{\operatorname{ar}(\square S R Q T)}{\frac{4}{25} \operatorname{ar}(\triangle P Q R)}=\frac{21}{4}$. From equation 1
$\frac{\operatorname{ar}(\square S R Q T)}{\operatorname{ar}(\triangle P Q R)}=\frac{21}{4} \times \frac{4}{25}$
$\frac{\operatorname{ar}(\triangle S R Q T)}{\operatorname{ar}(\triangle P Q R)}=\frac{21}{25}$
(b) The first and last term of a Geometrical Progression (G.P.) are 3 and 96 respectively. If the common ratio is 2 , find: [3]
(i) ' n ' the number of terms of the G.P.
(ii) Sum of the n terms.

Ans. Given first term (a) = 3, last term (1) =96 and common difference $(\mathrm{r})=2$.
(i). We know, formula to find nth term of a G.P is $a_{n}=a r^{n-1}$ or $l=a r^{n-1}$

So, according to question,
$96=3 \times 2^{n-1}$
$\Rightarrow 2^{n-1}=32$
$\Rightarrow 2^{n-1}=(2)^{5}$
$\Rightarrow n-1=5$
$\therefore n=6$
(ii). We have, $\mathrm{n}=6, \mathrm{r}=2$ and $\mathrm{a}=3$

Formula for the sum of n terms of a G.P $\left(S_{n}\right)=\frac{a\left(r^{n}-1\right)}{r-1}$
\therefore Sum of 6 terms $\left(S_{6}\right)=\frac{3\left(2^{6}-1\right)}{2-1}$

$$
\begin{aligned}
& =\frac{3(64-1)}{1} \\
& =3 \times 63=189
\end{aligned}
$$

(c) A hemispherical and a conical hole is scooped out of a solid wooden cylinder. Find the volume of the remaining solid where the measurements are as follows: The height of the solid cylinder is $\mathbf{7 c m}$, radius of each of hemisphere, cone and cylinder is $\mathbf{3 c m}$.
Height of cone is $\mathbf{3} \mathbf{~ c m}$. Give your answer correct to the nearest whole number Take $\pi=\frac{22}{7}$

Ans.
Given, Height of cylinder (h) $=7 \mathrm{~cm}$
Radius (r) $=3 \mathrm{~cm}$
\therefore Volume of cylinder $\left(V_{1}\right)=\pi r^{2} h$
$=\pi(3)^{2} 7=\pi .63 \mathrm{~cm}^{3}$

Height of cone $(\mathrm{H})=3 \mathrm{~cm}$
\therefore Volume of cone $\left(V_{2}\right)=\frac{1}{3} \pi r^{2} H$

$$
=\frac{1}{3} \pi(3)^{2} 3=\pi 9 \mathrm{~cm}^{3}
$$

Volume of hemisphere $\left(V_{3}\right)=\frac{2}{3} \pi r^{3}$

$$
=\frac{2}{3} \pi(3)^{3}=\pi 18 \mathrm{~cm}^{3}
$$

According to question,
Volume of remaining solid $=V_{1}-V_{2}-V_{3}$

$$
\pi .63-\pi 9-\pi 18
$$

\therefore Remaining volume $=\pi(63-9-18)$

$$
\begin{aligned}
& =\frac{22}{7} \times 36 \\
& =113.14 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 7

(a) In the given figure $A C$ is a tangent to the circle with centre O. If $A D B=55^{\circ}$, find x and y, Give reasons for your answer. [3]

Ans.

Given that, AC is a tangent to the circle with centre O

And $\angle \mathrm{ADB}=55^{\circ}$
Here, $\triangle A B D$ is a right angled triangle, so $\angle B A D=90^{\circ}$

We know,
Sum of interior angles of a triangle $=180^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{ADB}+\angle B A D+\angle A B D=180^{\circ} \\
& \Rightarrow 55^{\circ}+90^{\circ}+\angle A B D=180^{\circ} \\
& \Rightarrow \angle A B D=180^{\circ}-145 \\
& \therefore \angle A B D=35^{\circ}
\end{aligned}
$$

Since, $\angle A O E$ is subtended at the centre and $\angle E B A$ on the circle by the arc AE, Thus, $2 \angle A B D=\angle A O E$
$\angle A O E=2 \times 35$
$\therefore \mathrm{y}=70^{\circ}$

In $\triangle A O C, \angle O A C=90^{\circ}$
\because Sum of interior angles of triangle $=180^{\circ}$
$\therefore \angle O A C+\angle A O C+\angle A C O=180^{\circ}$
$\Rightarrow 90^{\circ}+y+x=180^{\circ}$
$\Rightarrow x+y=90^{\circ}$
$\Rightarrow x-35^{0}=90$
$\therefore x=55^{\circ}$
(b) The model of a building is constructed with scale factor 1: 30. [3]
(i) If the height of the model is $\mathbf{8 0} \mathrm{cm}$, find the actual height of the building in meters.
(ii) If the actual volume of a tank at the top of the building is $27 \mathrm{~m}^{3}$, find the volume of the tank on the top of the model.

Ans. Given scale factor is 1:30
(i). The ratio of height of the model and building is 1:30

So, if height of the model is 80 cm
Then, the actual height of the building $=80 \times 30=2400 \mathrm{~cm}=24 \mathrm{~m}$
(i)i. Given, actual volume of tank $=27 \mathrm{~m}^{3}$

Given scale factor $=1: 30$
Here,
$1 \mathrm{~m}=\frac{10}{3} \mathrm{~cm}$
$(1 \mathrm{~m})^{3}=\left(\frac{10}{3}\right)^{3}$
$1 \mathrm{~m}^{3}=\frac{1000}{27} \mathrm{~cm}^{3}$

Then, $27 \mathrm{~m}^{3}=\frac{1000}{27} \times 27=1000 \mathrm{~cm}^{3}$

Now,
$1 \mathrm{~cm}^{3}=0.001$ litres
$\therefore 1000 \mathrm{~cm}^{3}=0.001 \times 1000=1$ litres

Therefore, the required volume of model tank is 1 litres.
(c)Given, $\left|\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right| M=6 I$, where M is a matrix and 1 is unit matrix of order 2×2. [4]
(i) State the order of matrix M.
(ii) Find the matrix M

Ans.
(i) $\left|\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right| M=6 \mathrm{I}$

For matrix multiplication, the number of columns in first matrix should be equal to the number of rows in the other matrix and the resulting matrix will have order as below:

$$
\left|\left.\right|_{m \times n} \times\left|\left.\right|_{n \times q}=| |_{m \times q}\right.\right.
$$

As given:
$\left|\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right| M=\left|\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right|$
So, the order of M should be 2×2
Let $\mathrm{M}=\left|\begin{array}{ll}p & q \\ r & s\end{array}\right|$
$\left|\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right| \mathrm{M}=\left|\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right| \times\left|\begin{array}{cc}p & q \\ r & s\end{array}\right|=\left|\begin{array}{cc}4 p+2 r & 4 q+2 s \\ -p+r & -q+s\end{array}\right|$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{cc}
4 p+2 r & 4 q+2 s \\
-p+r & -q+s
\end{array}\right|=\left|\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right| \\
& 4 p+2 r=6 \\
& \text { eq } 1 \\
& -p+r=0 e q 2 \\
& 4 q+2 s=0 e q 3 \\
& -q+s=6 \text {.................eq } 4
\end{aligned}
$$

From eq2 we get,
$r=p$
Substituting the value of r in eq1
$4 r+2 r=6$
$6 r=6$
$r=1$
$\Rightarrow p=1$
From eq4 we get,
$s=6+q$
Substituting the value of r in eq3
$4 q+2(6+q)=0$
$4 q+12+2 q=0$
$6 q=-12$
$q=-2$
$\Rightarrow s=6-2=4$
Therefore, $M=\left|\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right|$

Question 8

(a) The sum of the first three terms of an Arithmetic Progression (A.P.) is 42 and the product of the first and third term is 52 . Find the first term and the common difference. [3]

Ans. Let the first term of A.P be a and the common difference be d .
So, the first three terms could be $a-d$, a, and $a+d$.

According to question,

$$
\begin{align*}
& a-d+a+a+d=42 \\
\Rightarrow & 3 a=42 \\
\therefore & a=\frac{42}{3}=14 \ldots \ldots . . . \tag{1}
\end{align*}
$$

And,
$(\mathrm{a}-\mathrm{d})(\mathrm{a}+\mathrm{d})=52$
$\Rightarrow \mathrm{a}^{2}-\mathrm{d}^{2}=52 \quad\left[\because(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=\mathrm{a}^{2}-b^{2}\right]$
Putting value of a from (1), we get
$\Rightarrow(14)^{2}-\mathrm{d}^{2}=52$
$\Rightarrow 196-52=\mathrm{d}^{2}$
$\Rightarrow \mathrm{d}^{2}=144$
$\therefore \mathrm{d}=12$
(b) The vertices of a $\triangle \mathrm{ABC}$ are $\mathrm{A}(3,8), \mathrm{B}(-1,2)$ and $\mathrm{C}(6,-6)$, Find: [3]
(i) Slope of BC.
(ii) Equation of a line perpendicular to BC and passing through A .

Ans. Given, the vertices of triangle ABC are $\mathrm{A}(3,8), \mathrm{B}(-1,2)$ and $\mathrm{C}(6,-6)$
i.e. know, slope of line $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
\therefore Slope of $\mathrm{BC}=\frac{-6-2}{6-(-1)}=\frac{-8}{7}$
ii. Let AE be the line which is perpendicular to BC and passes through A

So, Slope of $\mathrm{AE}=-\frac{1}{\text { Slope of } \mathrm{BC}}[\because \mathrm{AE}$ is perpendicular to BC$]$
\therefore Slope of $\mathrm{AE}=-\left(\frac{1}{-\frac{8}{7}}\right)=\frac{7}{8}$

Now, we have
Slope of AE $(m)=\frac{7}{8}$ and $A(3,8)$
\therefore Equation of line AE
$=y-8=\frac{7}{8}(x-3)$
$\Rightarrow 8 y-64=7 x-21$
$\Rightarrow 7 x-8 y-21+64=0$
$\Rightarrow 7 x-8 y+43=0$
(c) Using ruler and a compass only construct a semi-circle with diameter $\mathrm{BC}=7 \mathbf{c m}$.

Locate a point A on the circumference of the semicircle such that A is equidistant from B and C. Complete the cyclic quadrilateral $A B C D$, such that D is equidistant from AB and BC. Measure $\angle A D C$ and write it down. [4]

Ans.

1) Construct a semi-circle with diameter $\mathrm{BC}=7 \mathrm{~cm}$ i.e. radius 3.5 cm
2) Draw the perpendicular bisector of BC and extend it to touch the semi-circle
3) Mark this point as A (Since A should be equidistant from B and C)
4) Join $A B$ and $A C$
5) Draw the angle bisector of angle ABC and extend it to meet the semi-circle
6) Mark this point as D (D is equidistant from AB and BC)
7) Join AD and CD
8) Measure of $\angle \mathrm{ADC}$ is 135°

Question 9

(a) The data on the number of patients attending a hospital in a month are given below. Find the average (mean) number of patients attending the hospital in a month by using the shortcut method. [3]

Take the assumed mean as 45 . Give your answer correct to 2 decimal places.

Number of patients	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Number of days	5	2	7	9	2	5

Ans. Given, Assumed mean (A) $=45$
The frequency table can be obtained using the data above:

Number of patients	Mid-point(x)	Number of days(f)	$\mathrm{d}=\mathrm{x}-\mathrm{A}$ $=\mathrm{x}-45$	fd
$10-20$	15	5	-30	-150
$20-30$	25	2	-20	-40
$30-40$	35	7	-10	-70
$40-50$	45	9	0	0
$50-60$	55	2	10	20
$60-70$	65	5	20	100
		$\sum \mathrm{f}=30$		$\sum \mathrm{fd}=-140$

We have formula for mean $=A+\frac{\sum \mathrm{fd}}{\sum \mathrm{f}}$
\therefore Mean number of patients attending the hospital in a day
$=45+\frac{-140}{30}=45-4.667=40.33$

Hence, the mean or average number of patients attending the hospital in a month
$=40.33 \times 30$
$=1209.9$
(b) Using properties of proportion solve for \mathbf{x}, given. [3]
$\frac{\sqrt{5 x}+\sqrt{2 x-6}}{\sqrt{5 x}-\sqrt{2 x-6}}=4$

Ans. Given, $\frac{\sqrt{5 x}+\sqrt{2 x-6}}{\sqrt{5 x}-\sqrt{2 x-6}}=4$

Using rationalization, we get

$$
\begin{aligned}
& \frac{\sqrt{5 x}+\sqrt{2 x-6}}{\sqrt{5 x}-\sqrt{2 x-6}} \times \frac{\sqrt{5 x}+\sqrt{2 x-6}}{\sqrt{5 x}+\sqrt{2 x-6}}=4 \\
& \Rightarrow \frac{(\sqrt{5 x})^{2}+(\sqrt{2 x-6})^{2}}{(\sqrt{5 x})^{2}-(\sqrt{2 x-6})^{2}}=4 \\
& \Rightarrow \frac{5 x+2 \sqrt{5 x} \sqrt{2 x-6}+2 x-6}{5 x-2 x+6}=4 \\
& \Rightarrow 7 x+2 \sqrt{5 x} \sqrt{2 x-6}-6=4(3 x+6) \\
& \Rightarrow 7 x+2 \sqrt{5 x} \sqrt{2 x-6}-6=12 x+24 \\
& \Rightarrow 2 \sqrt{5 x} \sqrt{2 x-6}=5 x+30
\end{aligned}
$$

Squaring both the sides, we get

$$
\begin{aligned}
& (2 \sqrt{5 x} \sqrt{2 x-6})^{2}=(5 x+30)^{2} \\
& \Rightarrow 4 \times 5 x(2 x-6)=25 x^{2}+300 x+900 \\
& \Rightarrow 20 x(2 x-6)=25 x^{2}+300 x+900 \\
& \Rightarrow 40 x^{2}-120 x-25 x^{2}-300 x=900 \\
& \Rightarrow 15 x^{2}-420 x-900=0 \\
& \Rightarrow x^{2}-28 x-60=0 \\
& \Rightarrow x^{2}-30 x+2 x-60=0 \\
& \Rightarrow x(x-30)+2(x-30)=0 \\
& \Rightarrow(x-30)(x+2)=0 \\
& \therefore x=30 \text { or }-2
\end{aligned}
$$

(c) Sachin invests Rs. 8500 in $\mathbf{1 0 \%}$, Rs. 100 shares at Rs. 170 He sells the shares when the price of each share rises by Rs. 30. He invests the proceeds in $\mathbf{1 2 \%}$ Rs. 100 shares at Rs. 125, Find:[4]
(i) The sale proceeds
(ii) The number of Rs. 125 shares he buys.
(iii) The change in his annual income.

Ans.

Purchase price of each share $=$ Rs. 170
Then, number shares purchased for Rs. $8500=\frac{8500}{170}=50$
As the price of share increases by Rs. 30,

So,
Selling price of each share $=$ Rs. $(170+30)=$ Rs. 200
i. Sale proceeds shares $=$ Rs. $(200 \times 50)=$ Rs. 10000
ii. The number of shares purchased at Rs. 125 each $=\frac{10000}{125}=80$
iii. Initially,

Total face value of share $=$ Face value of each share \times numbers of share $=100 \times 50=$ Rs. 5000

Dividend $=10 \%$ of total face value

$$
=\frac{10}{100} \times 5000=\text { Rs. } 500
$$

After the price of share rises by Rs.30,

Total face value of share $=100 \times 80=$ Rs. 8000
And, Dividend $=12 \%$ of $8000=\frac{12}{100} \times 8000=$ Rs. 960

Hence, the change in annual income $=$ Rs. $(960-500)=$ Rs. 460

Question 10

(a) Use graph paper for this question. The marks obtained by $\mathbf{1 2 0}$ students in an English test are given below. [6]

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-$ 100
No. of students	5	9	16	22	26	18	11	6	4	3

Draw the ogive and hence, estimate:
(i) The median marks.
(ii) The number of students who did not pass the test if the pass percentage was 50.
(iii) The upper quartile marks.

Ans. We have to prepare a frequency table first,

Class Interval	Frequency	Cumulative frequency
$0-10$	5	5
$10-20$	9	14
$20-30$	16	30
$30-40$	22	52
$40-50$	26	78
$50-60$	18	96
$60-70$	11	107
$70-80$	6	113
$80-90$	4	117
$90-100$	3	120

Here, $\mathrm{n}=120$ and $\frac{n}{2}=\frac{120}{2}=60$

i. Through mark 60 , draw a line segment parallel to x -axis which meets the curve at A. From A, draw a line parallel to y - axis which meets the x -axis at point B . Therefore,

Median $=43$
ii. Number of students who did not pass the test = the students who obtained less than 50% marks $=5+9+16+22+26=78$
iii. The formula for upper quartile $=\left(\frac{3 n}{4}\right)^{\text {th }}$ term.

Therefore, the upper quartile marks $=\left(\frac{3 \times 120}{4}\right)^{\text {th }}$ term $=90^{\text {th }}$ term $=117$
(b) A man observes the angle of elevation of the top of the lower to be 45°. He walks towards it in a horizontal line through its base. On covering $\mathbf{2 0} \mathbf{~ m}$ the angle of elevation changes to 60°. Find the height of the tower correct to 2 significant figures. [4]

Ans.

Let PQ be the height of the tower and R and S be two positions of man from where the angle of elevation was formed.

According to question, $\mathrm{RS}=20 \mathrm{~m}, \angle Q S P=45^{\circ}$ and $\angle Q R P=60^{\circ}$
Let $\mathrm{PQ}=\mathrm{h}$ and $\mathrm{RP}=\mathrm{x}$

Then, in $\triangle Q S P$,
$\tan 45^{\circ}=\frac{P Q}{S P}$
$\Rightarrow \tan 45^{\circ}=\frac{h}{20+x} \quad\left[\because\right.$ Being right angled triangle $\left.\& \tan 45^{\circ}=1\right]$
$\Rightarrow 20+x=h$
$\Rightarrow x=h-20$

Similarly, in $\triangle P Q R$
$\tan 60^{\circ}=\frac{P Q}{R P}$
$\Rightarrow \sqrt{3}=\frac{h}{x}$
$\Rightarrow x=\frac{h}{\sqrt{3}}$

Now, we can write, ${ }^{h-20}=\frac{h}{\sqrt{3}} \quad$ [Combining the above equations]

$$
\begin{aligned}
& \Rightarrow \sqrt{3}(h-20)=h \\
& \Rightarrow \sqrt{3} h-20 \sqrt{3}=h \\
& \Rightarrow \sqrt{3} h-h=20 \sqrt{3} \\
& \Rightarrow h(\sqrt{3}-1)=20 \sqrt{3} \\
& \Rightarrow h=\frac{20 \sqrt{3}}{(\sqrt{3}-1)} \\
& \therefore h=47.32
\end{aligned}
$$

Hence, the height of the tower is 47.32 m .

Question 11

(a) Using the Remainder Theorem find the remainders obtained when $\mathrm{x}^{3}+(\mathrm{kx}+8) \mathrm{x}+\mathrm{k}$ is divided by $\mathbf{x}+\mathbf{1}$ and $\mathbf{x}-\mathbf{2}$.Hence find \mathbf{k} if the sum of the

two remainders is 1 .

Ans.
Let $\mathrm{P}(\mathrm{x})$ be a polynomial
So, we have $P(x)=x^{3}+(k x+8) x+k$

When $\mathrm{P}(\mathrm{x})$ is divided by $(\mathrm{x}+1)$ and $(\mathrm{x}-2)$, the remainder is $\mathrm{P}(-1)$ and $\mathrm{P}(2)$ respectively.

$$
=(-1)^{3}+[k(-1)+8]-1+k
$$

Now, $\mathrm{P}(-1)=-1+(k-8)+k$

$$
=2 k-9
$$

And,

$$
\begin{aligned}
& =(2)^{3}+[k(2)+8] 2+k \\
\mathrm{P}(2) & =8+(2 k+8) 2+k \\
& =8+4 k+16+k \\
& =5 k+24
\end{aligned}
$$

According to question, the sum of the two remainders is 1
i.e.
$\mathrm{P}(-1)+\mathrm{P}(2)=1$
$\Rightarrow(2 \mathrm{k}-9)+(5 \mathrm{k}+24)=1$
$\Rightarrow 2 \mathrm{k}-9+5 \mathrm{k}+24=1$
$\Rightarrow 7 \mathrm{k}+15=1$
$\Rightarrow 7 \mathrm{k}=-14$
$\therefore \mathrm{k}=-2$
(b) The product of two consecutive natural numbers which are multiples of $\mathbf{3}$ is equal to 810. Find the two numbers. [3]

Ans. Let the two consecutive natural numbers which are multiple of 3 be $3 x$ and ($3 x+3$)

Then, according to question,

Product of the numbers $=810$

$$
\begin{aligned}
& \Rightarrow 3 x \times(3 x+3)=810 \\
& \Rightarrow 9 x^{2}+9 x=810 \\
& \Rightarrow x^{2}+x=90 \\
& \Rightarrow x^{2}+x-90=0 \\
& \Rightarrow x^{2}+10 x-9 x+90=0 \\
& \Rightarrow x(x+10)-9(x+10)=0 \\
& \Rightarrow(x+10)(x-9)=0 \\
& \therefore x=-10 \text { or } 9
\end{aligned}
$$

Taking $x=9$, we get $3 x=3 \times 9=27$
And $(3 x+3)=(3 \times 9+3)=30$

Taking $x=-10$, we get $3 x=3 \times-10=-30$
And, $(3 x+3)=[3 \times(-10)+3]=-27$

Hence, the required numbers are 27 and 30 or -27 and -30
(c) In the given figure, ABCDE is a pentagon inscribed in a circle such that AC is a diameter and side $\mathrm{BC} \| \mathrm{AE}$. If $\angle \mathrm{BAC}=\mathbf{5 0}^{\circ}$, find giving reasons: [4]
(i) $\angle \mathrm{ACB}$
(ii) $\angle E D C$
(iii) $\angle B E C$

Hence prove that BE is also a diameter.

Ans. Given that, ABCDE is a pentagon inscribed in a circle such that AC is the diameter of circle and $\mathrm{BC} \| \mathrm{AE}$.
And , $\angle B A C=50^{\circ}$

Here, $\triangle \mathrm{ABC}$ is right angled triangle, so $\angle A B C=90^{\circ}$

Now,
$\angle A B C+\angle B A C+\angle A C B=180^{\circ}$
$\Rightarrow 50^{\circ}+90^{\circ}+\angle A C B=180$
[Sum of interior angles of triangle $=180^{\circ}$]
$\Rightarrow \angle A C B=180^{\circ}-140^{\circ}$
$\therefore \angle A C B=40^{\circ}$

Since, BC||AE
$\therefore \angle A C B=\angle E A C=40^{\circ}$
[Being alternate angle]

Again, in $\triangle A E C, \angle A E C=90^{\circ}$
[Sum of interior angles of triangle $=180^{\circ}$]
$\angle A E C+\angle E A C+\angle A C E=180^{\circ}$
$\Rightarrow 90^{\circ}+40^{\circ}+\angle A C E=180$
$\Rightarrow \angle A C E=180^{\circ}-130^{\circ}$
$\therefore \angle A C E=50^{\circ}$

And, $\angle B A C=50^{\circ}$

Therefore, $\mathrm{AB}|\mid \mathrm{CE}$
$[\because$ Being alternate angles made by transversal AC with lines CE\&AB,equal]

Now, $\angle B A E=50^{\circ}+40^{\circ}=90^{\circ}$

Also, since $\angle \mathrm{EAB}$ is subtended by EB on the circle
So, BE is a diameter of the given circle.

Here, AEDC is cyclic quadrilateral
So,
$\angle \mathrm{EAC}+\angle \mathrm{EDC}=180^{\circ}$
$\Rightarrow 40^{\circ}+\angle \mathrm{EDC}=180^{\circ}$
$\therefore \angle \mathrm{EDC}=140^{\circ}$

Now,
We see that Arc BC subtends angles $\angle \mathrm{BAC}$ and $\angle \mathrm{BEC}$ on the same side of the circle Therefore,
$\angle \mathrm{BAC}=\angle \mathrm{BEC}=50^{\circ}$

