ICSE Board Class X Mathematics
 Board Paper 2018
 (Two hours and a half)

Answers to this Paper must be written on the paper provided separately.
You will not be allowed to write during the first 15 minutes.
This time is to be spent in reading the question paper.
The time given at the head of this Paper is the time allowed for writing the answers.

Attempt all questions from Section \mathbf{A} and any four questions from Section \mathbf{B}.

All working, including rough work, must be clearly shown and must be done on the same sheet as the rest of the answer.
 Omission of essential working will result in loss of marks.

The intended marks for questions or parts of questions are given in brackets []. Mathematical tables are provided.

SECTION A (40 Marks)

Attempt all questions from this Section.

Question 1

(a) Find the value of and 'y' if:

$$
2\left[\begin{array}{cc}
x & 7 \tag{3}\\
9 & y-5
\end{array}\right]+\left[\begin{array}{cc}
6 & -7 \\
4 & 5
\end{array}\right]=\left[\begin{array}{cc}
10 & 7 \\
22 & 15
\end{array}\right.
$$

(b) Sonia had a recurring deposit account in a bank and deposited Rs. 600 per month for $2^{1} / 2$ years. If the rate of interest was 10% p.a., find the maturity value of this account.
(c) Cards bearing numbers $2,4,6,8,10,12,14,16,18$ and 20 are kept in a bag. A card is drawn at random from the bag. Find the probability of getting a card which is:
(i) a prime number.
(ii) a number divisible by 4 .
(iii) a number that is a multiple of 6 .
(iv) an odd number.

Question 2

(a) The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm . Find the
(i) radius of the cylinder
(ii) volume of cylinder (use $\pi=\frac{22}{7}$)
(b) If $(k-3),(2 k+1)$ and $(4 k+3)$ are three consecutive terms of an A.P., find the value of k.
(c) PQRS is a cyclic quadrilateral. Given $\angle \mathrm{QPS}=73^{\circ}, \angle \mathrm{PQS}=55^{\circ}$ and $\angle \mathrm{PSR}=82^{\circ}$, calculate:
(i) $\angle Q R S$
(ii) $\angle R Q S$
(iii) $\angle P R Q$

Question 3

(a) If $(x+2)$ and $(x+3)$ are factors of $x^{3}+a x+b$, find the values of ' a ' and ' b '.
(b) Prove that $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\tan \theta+\cot \theta$
(c) Using a graph paper draw a histogram for the given distribution showing the number of runs scored by 50 batsmen. Estimate the mode of the data:

Runs scored	$3000-$ 4000	$4000-$ 5000	$5000-$	$6000-$	$7000-$ 7000	$8000-$ 8000	$9000-$ 9000
No. of batsmen	4	18	9	6	7	2	4

Question 4

(a) Solve the following inequation, write down the solution set and represent it on the real number line:
$-2+10 x \leq 13 x+10<24+10 x, x \in Z$
(b) If the straight lines $3 x-5 y=7$ and $4 x+a y+9=0$ are perpendicular to one another, find the value of a.
(c) Solve $\mathrm{x}^{2}+7 \mathrm{x}=7$ and give your answer correct to two decimal places.

SECTION B (40 Marks)
 Attempt any four questions from this Section

Question 5

(a) The $4^{\text {th }}$ term of a G.P. is 16 and the $7^{\text {th }}$ term is 128 . Find the first term and common ratio of the series.
(b) A man invests Rs. 22,500 in Rs. 50 shares available at 10% discount. If the dividend paid by the company is 12%, calculate:
(i) The number of shares purchased
(ii) The annual dividend received.
(iii) The rate of return he gets on his investment. Give your answer correct to the nearest whole number.
(c) Use graph paper for this question (Take $2 \mathrm{~cm}=1$ unit along both x and y axis). ABCD is a quadrilateral whose vertices are $\mathrm{A}(2,2), \mathrm{B}(2,-2), \mathrm{C}(0,-1)$ and $\mathrm{D}(0,1)$.
(i) Reflect quadrilateral ABCD on the y-axis and name it as $A^{\prime} \mathrm{B}^{\prime} C D$.
(ii) Write down the coordinates of A' and B'.
(iii) Name two points which are invariant under the above reflection.
(iv) Name the polygon A'B'CD.

Question 6

(a) Using properties of proportion, solve for x . Given that x is positive:
$\frac{2 x+\sqrt{4 x^{2}-1}}{2 x-\sqrt{4 x^{2}-1}}=4$
(b) if $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right], B=\left[\begin{array}{rr}0 & 4 \\ -1 & 7\end{array}\right]$ and $c=\left[\begin{array}{rr}1 & 0 \\ -1 & 4\end{array}\right]$, find $A C+B^{2}-10 C$.
(c) Prove that $(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2$

Question 7

(a) Find the value of k for which the following equation has equal roots. $\mathrm{x}^{2}+4 \mathrm{kx}+\left(\mathrm{k}^{2}-\mathrm{k}+2\right)=0$
(b) On a map drawn to a scale of 1:50,000, a rectangular plot of land ABCD has the following dimensions. $\mathrm{AB}=6 \mathrm{~cm} ; \mathrm{BC}=8 \mathrm{~cm}$ and all angles are right angles. Find: [3] (i) the actual length of the diagonal distance AC of the plot in km.
(ii) the actual area of the plot in sq. km.
(c) $A(2,5), B(-1,2)$ and $C(5,8)$ are the vertices of a triangle $A B C,{ }^{\prime} M$ ' is a point on $A B$ such that $A M: M B=1: 2$. Find the co-ordinates of ' M '. Hence find the equation of the line passing through the points C and M .

Question 8

(a) Rs. 7500 were divided equally among a certain number of children. Had there been 20 less children, each would have received Rs. 100 more. Find the original number of children.
(b) If the mean of the following distribution is 24 , find the value of 'a '.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Number of students	7	a	8	10	5

(c) Using ruler and compass only, construct a $\triangle \mathrm{ABC}$ such that $\mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{AB}=6.5$ cm and $\angle \mathrm{ABC}=120^{\circ}$
(i) Construct a circum-circle of $\triangle \mathrm{ABC}$
(ii) Construct a cyclic quadrilateral $A B C D$, such that D is equidistant from $A B$ and BC.

Question 9

(a) Priyanka has a recurring deposit account of Rs. 1000 per month at 10% per annum. If she gets Rs. 5550 as interest at the time of maturity, find the total time for which the account was held.
(b) In $\triangle \mathrm{PQR}, \mathrm{MN}$ is parrallel to QR and $\frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{2}{3}$
(i) Find $\frac{M N}{Q R}$
(ii) Prove that $\triangle O M N$ and $\triangle O R Q$ are similar.
(iii) Find, Area of $\triangle O M N$: Area of $\triangle O R Q$

(c) The following figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. Their common radius is 7 cm . The height of the cylinder and cone are each of 4 cm . Find the volume of the solid.

Question 10

(a) Use Remainder theorem to factorize the following polynomial: $2 x^{3}+3 x^{2}-9 x-10$
(b) In the figure given below ' O ' is the centre of the circle. If $\mathrm{QR}=\mathrm{OP}$ and $\angle \mathrm{ORP}=20^{\circ}$. Find the value of ' x ' giving reasons.

(c) The angle of elevation from a point P of the top of a tower $Q R, 50 \mathrm{~m}$ high is 60° and that of the tower PT from a point Q is 30°. Find the height of the tower PT, correct to the nearest metre.

Question 11

(a) The $4^{\text {th }}$ term of an A.P. is 22 and $15^{\text {th }}$ term is 66 . Find the first terns and the common difference. Hence find the sum of the series to 8 terms.
(b) Use Graph paper for this question.
[6]
A survey regarding height (in cm) of 60 boys belonging to Class 10 of a school was conducted. The following data was recorded:

Height in cm	$135-140$	$140-145$	$145-150$	$150-155$	$155-160$	$160-165$	$165-170$
No. of boys	4	8	20	14	7	6	1

Taking $2 \mathrm{~cm}=$ height of 10 cm along one axis and $2 \mathrm{~cm}=10$ boys along the other axis draw an ogive of the above distribution. Use the graph to estimate the following:
(i) the median
(ii) lower Quartile
(iii) if above 158 cm is considered as the tall boys of the class. Find the number of boys in the class who are tall.

Solution

SECTION A

1.

(a)
$2\left[\begin{array}{cc}x & 7 \\ 9 & y-5\end{array}\right]+\left[\begin{array}{cc}6 & -7 \\ 4 & 5\end{array}\right]=\left[\begin{array}{cc}10 & 7 \\ 22 & 15\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}2 \mathrm{x} & 14 \\ 18 & 2 \mathrm{y}-10\end{array}\right]+\left[\begin{array}{cc}6 & -7 \\ 4 & 5\end{array}\right]=\left[\begin{array}{cc}10 & 7 \\ 22 & 15\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}2 x+6 & 14-7 \\ 18+4 & 2 y-10+5\end{array}\right]=\left[\begin{array}{cc}10 & 7 \\ 22 & 15\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}2 x+6 & 7 \\ 22 & 2 y-5\end{array}\right]=\left[\begin{array}{cc}10 & 7 \\ 22 & 15\end{array}\right]$
$\Rightarrow 2 \mathrm{x}+6=10$ and $2 \mathrm{y}-5=15$
$\Rightarrow 2 \mathrm{x}=4$ and $2 \mathrm{y}=20$
$\Rightarrow \mathrm{x}=2$ and $\mathrm{y}=10$
(b)

Given : $\mathrm{P}=$ Rs. 600, $\mathrm{n}=30$ months and $\mathrm{r}=10 \%$
$\therefore \mathrm{I}=$ Rs. $\left(600 \times \frac{30(30+1)}{2 \times 12} \times \frac{10}{100}\right)=$ Rs. 2325
Since sum deposited $=\mathrm{P} \times \mathrm{n}=$ Rs. $600 \times 30=$ Rs. 18000
Thus, the maturity value $=$ Rs. $(18000+2325)=$ Rs. 20325
(c)

Total number of cards $=10$
(i) Prime number card is 2.
\Rightarrow Number of favourable outcomes $=1$
\therefore Required probability $=\frac{1}{10}$
(ii) Cards having number divisible by 4 are $4,8,12,16,20$.
\Rightarrow Number of favourable outcomes $=5$
\therefore Required probability $=\frac{5}{10}=\frac{1}{2}$
(iii) Cards having number that is multiple of 6 are $6,12,18$
\Rightarrow Number of favourable outcomes $=3$
\therefore Required probability $=\frac{3}{10}$
(iv) Odd number card is not there.
\Rightarrow Number of favourable outcomes $=0$
\therefore Required probability $=0$
2.
(a)

Let the radius of the cylindrical vessel be r and its height be h .
\Rightarrow Height $=\mathrm{h}=25 \mathrm{~cm}$
(i) Circumference of the base $=132 \mathrm{~cm}$
$\Rightarrow 2 \pi r=132$
$\Rightarrow 2 \times \frac{22}{7} \times \mathrm{r}=132$
$\Rightarrow \mathrm{r}=21 \mathrm{~cm}$
(ii) Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 21 \times 21 \times 25 \\
& =34650 \mathrm{~cm}^{3}
\end{aligned}
$$

(b)
$(\mathrm{k}-3),(2 \mathrm{k}+1)$ and $(4 \mathrm{k}+3)$ are three consecutive terms of an A.P.
$\Rightarrow 2(2 \mathrm{k}+1)=(\mathrm{k}-3)+(4 \mathrm{k}+3)$
$\Rightarrow 4 \mathrm{k}+2=\mathrm{k}-3+4 \mathrm{k}+3$
$\Rightarrow 4 \mathrm{k}+2=5 \mathrm{k}$
$\Rightarrow \mathrm{k}=2$
(c)

Given: $P Q R S$ is a cyclic quadrilateral.
$\angle \mathrm{QPS}=73^{\circ}, \angle \mathrm{PQS}=55^{\circ}$ and $\angle \mathrm{PSR}=82^{\circ}$
(i) Opposite angle of a cyclic quadrilateral are supplementary.
$\Rightarrow \angle \mathrm{QPS}+\angle \mathrm{QRS}=180^{\circ}$
$\Rightarrow 73^{\circ}+\angle \mathrm{QRS}=180^{\circ}$
$\Rightarrow \angle \mathrm{QRS}=180^{\circ}-73^{\circ}=107^{\circ}$
(ii) Opposite angle of a cyclic quadrilateral are supplementary.
$\Rightarrow \angle \mathrm{PSR}+\angle \mathrm{PQR}=180^{\circ}$
$\Rightarrow \angle \mathrm{PSR}+(\angle \mathrm{PQS}+\angle \mathrm{RQS})=180^{\circ}$
$\Rightarrow 82^{\circ}+55^{\circ}+\angle \mathrm{RQS}=180^{\circ}$
$\Rightarrow \angle \mathrm{RQS}=180^{\circ}-137^{\circ}=43^{\circ}$
(iii) In $\triangle \mathrm{PQS}$, by angle sum property, we have
$\Rightarrow \angle \mathrm{PSQ}+\angle \mathrm{PQS}+\angle \mathrm{QPS}=180^{\circ}$
$\Rightarrow \angle \mathrm{PSQ}+55^{\circ}+73^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PSQ}=180^{\circ}-128^{\circ}=52^{\circ}$
Now, $\angle \mathrm{PRQ}=\angle \mathrm{PSQ} \quad$ (angles in the same segment of a circle)
$\Rightarrow \angle \mathrm{PRQ}=52^{\circ}$
3.
(a)

Given $(x+2)$ is a factor of $x^{3}+a x+b ;$
$\Rightarrow(-2)^{3}+\mathrm{a}(-2)+\mathrm{b}=0 \quad(\mathrm{x}+2=0 \Rightarrow \mathrm{x}=-2)$
$\Rightarrow-8-2 \mathrm{a}+\mathrm{b}=0$
$\Rightarrow-2 \mathrm{a}+\mathrm{b}=8$
Also, given that $(x+3)$ is a factor of $x^{3}+a x+b$;
$\Rightarrow(-3)^{3}+\mathrm{a}(-3)+\mathrm{b}=0$
$\Rightarrow-27-3 \mathrm{a}+\mathrm{b}=0$
$\Rightarrow-3 \mathrm{a}+\mathrm{b}=27$
Subtracting (i) from (ii), we have
$-a=19 \Rightarrow a=-19$
Substituting $\mathrm{a}=-19$ in (i), we have
$-2 \times(-19)+b=8$
$\Rightarrow 38+\mathrm{b}=8$
$\Rightarrow \mathrm{b}=-30$
Hence, $a=-19$ and $b=-30$
(b)
L.H.S. $=\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}$

$$
=\sqrt{\frac{1}{\cos ^{2} \theta}+\frac{1}{\sin ^{2} \theta}}
$$

$$
=\sqrt{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta \sin ^{2} \theta}}
$$

$$
=\sqrt{\frac{1}{\cos ^{2} \theta \sin ^{2} \theta}}
$$

$$
=\sqrt{\frac{1}{\cos ^{2} \theta} \times \frac{1}{\sin ^{2} \theta}}
$$

$$
=\sqrt{\sec ^{2} \theta \times \operatorname{cosec}^{2} \theta}
$$

$$
=\sec \theta \times \operatorname{cosec} \theta
$$

R.H.S. $=\tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}=\frac{1}{\cos \theta} \times \frac{1}{\sin \theta}=\sec \theta \times \operatorname{cosec} \theta$

Thus, L.H.S. $=$ R.H.S.
(c) The histogram is as follows:

From histogram, we have mode $=4600$
4.
(a)

Given inequation: $-2+10 x \leq 13 x+10<24+10 x, x \in Z$
$\Rightarrow-2+10 x \leq 13 x+10$ and $13 x+10<24+10 x$
$\Rightarrow-2-10 \leq 13 x-10 x$ and $13 x-10 x<24-10$
$\Rightarrow-12 \leq 3 \mathrm{x} \quad$ and $3 \mathrm{x}<14$
$\Rightarrow-4 \leq \mathrm{x} \quad$ and $\mathrm{x}<4.6$
\therefore Solution set $=\{\mathrm{x}:-4 \leq \mathrm{x}<4.6$ and $\mathrm{x} \in \mathrm{Z}\}$
Representation on number line is as follows:

(b)

$$
\begin{aligned}
& 3 x-5 y=7 \\
& \Rightarrow 5 y=3 x-7 \\
& \Rightarrow y=\frac{3}{5} x-\frac{7}{5} \\
& \Rightarrow \text { Its slope }=\frac{3}{5} \\
& 4 x+a y+9=0 \\
& \Rightarrow a y=-4 x-9 \\
& \Rightarrow y=\frac{-4}{a} x-\frac{9}{a} \\
& \Rightarrow \text { Its slope }=\frac{-4}{a}
\end{aligned}
$$

Since lines are perpendicular to each other,
$\frac{3}{5} \times \frac{-4}{\mathrm{a}}=-1 \Rightarrow \frac{3}{5} \times \frac{4}{\mathrm{a}}=1 \Rightarrow \frac{4}{\mathrm{a}}=\frac{5}{3}$
$\Rightarrow \mathrm{a}=\frac{4 \times 3}{5}=\frac{12}{5}$
(c)

Given quadratic equation is $x^{2}+7 x=7$
$\Rightarrow x^{2}+7 x-7=0$
Comparing with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, we have $\mathrm{a}=1, \mathrm{~b}=7$ and $\mathrm{c}=-7$
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\Rightarrow x=\frac{-7 \pm \sqrt{7^{2}-4 \times 1 \times(-7)}}{2 \times 1}$
$\Rightarrow \mathrm{x}=\frac{-7 \pm \sqrt{77}}{2}$
$\Rightarrow \mathrm{x}=\frac{-7 \pm 8.77}{2}$
$\Rightarrow \mathrm{x}=\frac{-7+8.77}{2}$ and $\mathrm{x}=\frac{-7-8.77}{2}$
$\Rightarrow \mathrm{x}=\frac{1.77}{2}$ and $\mathrm{x}=\frac{-15.77}{2}$
$\Rightarrow \mathrm{x}=0.885$ and $\mathrm{x}=-7.885$
$\Rightarrow \mathrm{x}=0.89$ and $\mathrm{x}=-7.89$ (correct to two decimal places)

SECTION B (40 Marks)

Attempt any four questions from this section
5.
(a)

$$
\begin{aligned}
& 4^{\text {th }} \text { term of G.P. }=16 \\
& \Rightarrow \mathrm{ar}^{4-1}=16 \\
& 7^{\text {th }} \text { term of G.P. }=128 \\
& \Rightarrow \mathrm{ar}^{7-1}=128 \\
& \text { so, } \frac{\mathrm{ar}^{3}}{\mathrm{ar}^{6}}=\frac{16}{128} \\
& \Rightarrow \frac{1}{\mathrm{r}^{3}}=\frac{1}{8} \\
& \Rightarrow \mathrm{r}=2 \\
& \mathrm{ar}^{3}=16 \\
& \mathrm{a} \times 2^{3}=16 \\
& \mathrm{a} \times 8=16 \\
& \mathrm{a}=2
\end{aligned}
$$

(b)

Total investment $=$ Rs.22,500
Face value $=$ Rs. 50
Discount $=\frac{10}{100} \times 50=$ Rs. 5
Market value $=$ Face value-discount $=$ Rs .45
Total shares purchased $=\frac{22,500}{45}=500$
Total dividend $=\frac{12}{100} \times 50 \times 500=3000$
Rate of return $=\frac{3000}{22500} \times 100=13.33 \% \approx 13 \%$
(c)
(i) and (ii)

(iii) D and C are invariant points.
(iv) $A^{\prime} B^{\prime} C D$ is a trapezium
6.
(a)

$$
\begin{aligned}
& \frac{2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}-1}}{2 \mathrm{x}-\sqrt{4 \mathrm{x}^{2}-1}}=4 \\
& \Rightarrow \frac{2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}-1}+2 \mathrm{x}-\sqrt{4 \mathrm{x}^{2}-1}}{2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}-1}-2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}-1}}=\frac{4+1}{4-1} \\
& \Rightarrow \frac{4 \mathrm{x}}{2 \sqrt{4 \mathrm{x}^{2}-1}}=\frac{5}{3} \\
& \Rightarrow \frac{2 \mathrm{x}}{\sqrt{4 \mathrm{x}^{2}-1}}=\frac{5}{3} \\
& \Rightarrow \frac{4 \mathrm{x}^{2}}{4 \mathrm{x}^{2}-1}=\frac{25}{9} \quad \text { (squaring both sides) } \\
& \Rightarrow \frac{4 \mathrm{x}^{2}-4 \mathrm{x}^{2}+1}{4 \mathrm{x}^{2}-1}=\frac{25-9}{9} \quad \text { (By dividendo) } \\
& \Rightarrow \frac{1}{4 \mathrm{x}^{2}-1}=\frac{16}{9} \\
& \Rightarrow 9=64 \mathrm{x}^{2}-16 \\
& \Rightarrow 64 \mathrm{x}^{2}=25 \\
& \Rightarrow \mathrm{x}^{2}=\frac{25}{64} \\
& \Rightarrow \mathrm{x}= \pm \frac{5}{8} \\
& \Rightarrow \mathrm{x}=\frac{5}{8} \quad \text { (x is positive) }
\end{aligned}
$$

(b)

Given : $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}1 & 0 \\ -1 & 4\end{array}\right]$
Now, $\mathrm{AC}=\mathrm{A} \times \mathrm{C}=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right] \times\left[\begin{array}{cc}1 & 0 \\ -1 & 4\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
2 \times 1+3 \times(-1) & 2 \times 0+3 \times 4 \\
5 \times 1+7 \times(-1) & 5 \times 0+7 \times 4
\end{array}\right] \\
& =\left[\begin{array}{cc}
2-3 & 0+12 \\
5-7 & 0+28
\end{array}\right] \\
& =\left[\begin{array}{ll}
-1 & 12 \\
-2 & 28
\end{array}\right]
\end{aligned}
$$

And, $B^{2}=B \times B=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right] \times\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$

$$
=\left[\begin{array}{cc}
0 \times 0+4 \times(-1) & 0 \times 4+4 \times 7 \\
-1 \times 0+7 \times(-1) & -1 \times 4+7 \times 7
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
0-4 & 0+28 \\
0-7 & -4+49
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
-4 & 28 \\
-7 & 45
\end{array}\right]
$$

Now, $A C+B^{2}-10 C=\left[\begin{array}{ll}-1 & 12 \\ -2 & 28\end{array}\right]+\left[\begin{array}{cc}-4 & 28 \\ -7 & 45\end{array}\right]-10\left[\begin{array}{cc}1 & 0 \\ -1 & 4\end{array}\right]$

$$
=\left[\begin{array}{ll}
-1 & 12 \\
-2 & 28
\end{array}\right]+\left[\begin{array}{ll}
-4 & 28 \\
-7 & 45
\end{array}\right]-\left[\begin{array}{cc}
10 & 0 \\
-10 & 40
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-1-4-10 & 12+28-0 \\
-2-7+10 & 28+45-40
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-15 & 40 \\
1 & 33
\end{array}\right]
$$

(c)

$$
\begin{aligned}
\text { L.H.S. } & =(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta) \\
& =\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right) \\
& =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) \\
& =\frac{1}{\sin \theta \cos \theta}\binom{\sin \theta \cos \theta+\sin ^{2} \theta+\sin \theta+\cos ^{2} \theta}{+\sin \theta \cos \theta+\cos \theta-\cos \theta-\sin \theta-1} \\
& =\frac{1}{\sin \theta \cos \theta}\left(2 \sin \theta \cos \theta+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-1\right) \\
& =\frac{1}{\sin \theta \cos \theta}(2 \sin \theta \cos \theta+1-1) \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta} \\
& =2 \\
& =\text { R.H.S. }
\end{aligned}
$$

7.

(a)

For the given equation $x^{2}+4 k x+\left(k^{2}-k+2\right)=0$
$\mathrm{a}=1, \mathrm{~b}=4 \mathrm{k}$ and $\mathrm{c}=\mathrm{k}^{2}-\mathrm{k}+2$
Since the roots are equal,
$b^{2}-4 a c=0$
$\Rightarrow(4 \mathrm{k})^{2}-4 \times 1 \times\left(\mathrm{k}^{2}-\mathrm{k}+2\right)=0$
$\Rightarrow 16 \mathrm{k}^{2}-4 \mathrm{k}^{2}+4 \mathrm{k}-8=0$
$\Rightarrow 12 \mathrm{k}^{2}+4 \mathrm{k}-8=0$
$\Rightarrow 3 \mathrm{k}^{2}+\mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}^{2}+3 \mathrm{k}-2 \mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}(\mathrm{k}+1)-2(\mathrm{k}+1)=0$
$\Rightarrow(\mathrm{k}+1)(3 \mathrm{k}-2)=0$
$\Rightarrow \mathrm{k}+1=0$ or $3 \mathrm{k}-2=0$
$\Rightarrow \mathrm{k}=-1$ or $\mathrm{k}=\frac{2}{3}$
(b)

Scale: 1:50000
1 cm represents $50000 \mathrm{~cm}=\frac{50000}{1000 \times 100}=0.5 \mathrm{~km}$
(i) In $\triangle A B C$, by pythagoras theorem

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=6^{2}+8^{2}=36+64=100 \\
& \Rightarrow \mathrm{AC}=10 \mathrm{~cm}
\end{aligned}
$$

\Rightarrow Actual length of diagonal $\mathrm{AC}=10 \times 0.5=5 \mathrm{~km}$
(ii) $1 \mathrm{~cm}=0.5 \mathrm{~km}$
$\Rightarrow 1 \mathrm{~cm}^{2}=0.25 \mathrm{~km}$
Area of rectangle $\mathrm{ABCD}=\mathrm{AB} \times \mathrm{BC}=6 \times 8=48 \mathrm{~cm}^{2}$
\Rightarrow Actual area of a plot $=48 \times 0.25=12 \mathrm{~km}^{2}$
(c)

Let the co-ordinates of M be (x, y).
Thus, we have
$\mathrm{x}=\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{1 \times(-1)+2 \times 2}{1+2}=\frac{-1+4}{3}=\frac{3}{3}=1$
$\mathrm{y}=\frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{1 \times(2)+2 \times 5}{1+2}=\frac{2+10}{3}=\frac{12}{3}=4$
\Rightarrow Co-ordinates of M are (1,4).
Slope of line passing through C and $M=m=\frac{4-8}{1-5}=\frac{-4}{-4}=1$
\therefore Required equation is given by

$$
\begin{aligned}
& y-8=1(x-5) \\
& \Rightarrow y-8=x-5 \\
& \Rightarrow y=x+3
\end{aligned}
$$

8.

(a)

Let the original number of children be x.
It is given that Rs. 7500 is divided among x children.
\Rightarrow Money received by each child $=$ Rs. $\frac{7500}{x-20}$
If there were 20 less children, then money received by each child $=$ Rs. $\frac{7500}{x-20}$
From the given information, we have
$\frac{7500}{x-20}-\frac{7500}{x}=100$
$\Rightarrow \frac{75}{x-20}-\frac{75}{x}=1$
$\Rightarrow \frac{75 \mathrm{x}-75 \mathrm{x}+1500}{\mathrm{x}^{2}-20 \mathrm{x}}=1$
$\Rightarrow 1500=x^{2}-20 \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}-20 \mathrm{x}-1500=0$
$\Rightarrow x^{2}-50 x+30 x-1500=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-50)+30(\mathrm{x}-50)=0$
$\Rightarrow(x-50)(x+30)=0$
$\Rightarrow \mathrm{x}=50$ or $\mathrm{x}=-30$
Since number of children cannot be negative, we reject $x=-30$.
$\Rightarrow \mathrm{x}=50$
Thus, the original number of children $=50$
(b)

We have,

C.I.	f	Class mark x	fx
$0-10$	7	5	35
$10-20$	a	15	15 a
$20-30$	8	25	200
$30-40$	10	35	350
$40-50$	5	45	225
	$\sum \mathrm{f}=30+\mathrm{a}$		$\sum \mathrm{fx}=810+15 \mathrm{a}$

Mean $=24 \quad$ (given)
$\Rightarrow \frac{\sum \mathrm{fx}}{\sum \mathrm{f}}=24 \Rightarrow \frac{810+15 \mathrm{a}}{30+\mathrm{a}}=24 \Rightarrow 810+15 \mathrm{a}=720+24 \mathrm{a}$
$\Rightarrow \mathrm{a}=10$
(c)

Steps of construction:

1) Draw a line segment $B C$ of length 5 cm .
2) At B, draw a ray $B X$ making an angle of 120° with $B C$.
3) With B as centre and radius 6.5 cm , draw an arc to cut the ray $B X$ at A. Join AC.
$\Delta \mathrm{ABC}$ will be obtained.
4) Draw the perpendicular bisectors of AB and BC to meet at point 0 .
5) With 0 as centre and radius $O A$, draw a circle. The circle will circumscribe $\triangle \mathrm{ABC}$.
6) Draw the angle bisector of $\angle \mathrm{ABC}$.
7) The angle bisector of $\angle \mathrm{ABC}$ and let it meet circle at point D .
8) Join $A D$ and $D C$ to obtain the required cyclic quadrilateral $A B C D$ such that point D is equidistant from AB and BC .

9.

(a)

Given : $\mathrm{P}=$ Rs. 1000, $\mathrm{r}=10 \%$ and $\mathrm{I}=$ Rs. 5550
$\mathrm{I}=\mathrm{P} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2 \times 12} \times \frac{\mathrm{r}}{100}$
$\Rightarrow 5550=1000 \times \frac{\mathrm{n}(\mathrm{n}+1)}{24} \times \frac{10}{100}$
$\Rightarrow 1332=\mathrm{n}(\mathrm{n}+1)$
$\Rightarrow \mathrm{n}^{2}+\mathrm{n}-1332=0$
$\Rightarrow \mathrm{n}^{2}+37 \mathrm{n}-36 \mathrm{n}-1332=0$
$\Rightarrow \mathrm{n}(\mathrm{n}+37)-36(\mathrm{n}+37)=0$
$\Rightarrow(\mathrm{n}+37)(\mathrm{n}-36)=0$
$\Rightarrow \mathrm{n}=-37$ or $\mathrm{n}=36$
Since number of months cannot be negative, we reject $n=-37$
$\Rightarrow \mathrm{n}=36$
Thus, total time is 36 months.
(b)
(i) In $\triangle P M N$ and $\triangle P Q R, M N \| Q R$
$\Rightarrow \angle \mathrm{PMN}=\angle \mathrm{PQR} \quad$ (alternate angles)
$\Rightarrow \angle \mathrm{PNM}=\angle \mathrm{PRQ} \quad$ (alternate angles)
$\Rightarrow \triangle \mathrm{PMN} \sim \triangle \mathrm{PQR} \quad$ (AA postulate)
$\Rightarrow \frac{\mathrm{PM}}{\mathrm{PQ}}=\frac{\mathrm{MN}}{\mathrm{QR}}$
$\Rightarrow \frac{2}{5}=\frac{\mathrm{MN}}{\mathrm{QR}} \quad\left[\frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{2}{3} \Rightarrow \frac{\mathrm{PM}}{\mathrm{PQ}}=\frac{2}{5}\right]$
(ii) In $\triangle O M N$ and $\triangle O R Q$,
$\angle \mathrm{OMN}=\angle \mathrm{ORQ} \quad$ (alternate angles)
$\angle \mathrm{MNO}=\angle \mathrm{OQR} \quad$ (alternate angles)
$\Rightarrow \triangle \mathrm{OMN} \sim \triangle \mathrm{ORQ}$ (AA postulate)
(iii) $\frac{\text { Area of } \triangle O M N}{\text { Area of } \triangle O R Q}=\frac{M N}{R Q}=\frac{2}{5}$
(c)

Volume of solid = Volume of cone + Volume of cylinder + Volume of hemisphere

Volume of cone $=\frac{\pi r^{2} h}{3}=\frac{22 \times 7 \times 7 \times 4}{7 \times 3}=\frac{616}{3} \mathrm{~cm}^{3}$
Volume of cylinder $=\pi \mathrm{r}^{2} \mathrm{~h}=\frac{22 \times 7 \times 7 \times 4}{7}=616 \mathrm{~cm}^{3}$
Volume of hemisphere $=\frac{2}{3} \pi \mathrm{r}^{3}=\frac{2 \times 22 \times 7 \times 7 \times 7}{3 \times 7}=\frac{2156}{3} \mathrm{~cm}^{3}$

Total volume $=\frac{616}{3}+616+\frac{2156}{3}=1540 \mathrm{~cm}^{3}$
10.
(a) Let $\mathrm{P}(\mathrm{x})=2 x^{3}+3 x^{2}-9 x-10$
$\mathrm{P}(2)=16+12-18-10$ $\mathrm{P}(2)=0$

So, $(x-2)$ is a factor.
Let us divide $\mathrm{P}(\mathrm{x})$ with ($\mathrm{x}-2$), we get
$(x-2)\left(2 x^{2}+7 x+5\right)$
This can be further factored to
$(x-2)\left(2 x^{2}+5 x+2 x+5\right)$......... (Split 7x into two terms, whose sum is 7 x and product is $10 x^{2}$)
$(x-2)\left(2 x^{2}+5 x+2 x+5\right)$
$(x-2)(x(2 x+5)+1(2 x+5))$
$(x-2)(2 x+5)(x+1)$
(b)

Now,
$\mathrm{OP}=\mathrm{QR}$....given
$\mathrm{So}, \mathrm{OP}=\mathrm{OT}=\mathrm{OQ}=\mathrm{QR}$
In $\triangle R Q P$
$\mathrm{RQ}=\mathrm{QO}$
So $\angle \mathrm{QRO}=\angle \mathrm{QOR}=20^{\circ}$
So by sum of angles in $\triangle R Q P$
$\angle \mathrm{RQO}=140^{\circ}$
Now
$\angle \mathrm{RQO}+\angle \mathrm{OQP}=180^{\circ}$.....linear pair
$\angle O Q P=40^{\circ}$
In $\triangle P O Q$
OQ = PO...radii
So $\angle \mathrm{QPO}=\angle \mathrm{OQP}=40^{\circ}$
So by sum of angles in $\triangle 0 Q P$
$\angle \mathrm{POQ}=100^{\circ}$
Now,
$\angle \mathrm{POT}+\angle \mathrm{POQ}+\angle \mathrm{QOR}=180^{\circ} \ldots . .$. angles in straight line
$\mathrm{x}=60^{\circ}$
(c)

In $\triangle \mathrm{PQR}$
$\tan 60^{\circ}=\frac{R Q}{P Q}$
$\sqrt{3}=\frac{50}{\mathrm{PQ}}$
$P Q=\frac{50}{\sqrt{3}}$
In $\triangle \mathrm{PQT}$
$\tan 30^{\circ}=\frac{\mathrm{PT}}{\mathrm{PQ}}$
$\frac{1}{\sqrt{3}}=\frac{\mathrm{PT}}{\frac{50}{\sqrt{3}}}$
$\mathrm{PT}=\frac{1}{\sqrt{3}} \times \frac{50}{\sqrt{3}}=\frac{50}{3}$
11.
(a)

Let a be the first term and d be the common difference of given A.P.

Now,
$4^{\text {th }}$ term $=22$
$\Rightarrow \mathrm{a}+3 \mathrm{~d}=22$
$15^{\text {th }}$ term $=66$
$\Rightarrow a+14 d=66$

Subtracting (i) from (ii), we have
$11 \mathrm{~d}=44$
$\Rightarrow \mathrm{d}=4$

Substituting the value of d in (i), we get
$a=22-3 \times 4=22-12=10$
\Rightarrow First term $=10$

Now,
Sum of 8 terms $=\frac{8}{2}[2 \times 10+7 \times 4]=4[20+28]=4 \times 48=192$
(b) The cumulative frequency table of the given distribution table is as follows:

Height in cm	No. of boys (f)	Cumulative frequency
$135-140$	4	4
$140-145$	8	12
$145-150$	20	32
$150-155$	14	46
$155-160$	7	53
$160-165$	6	59
$165-170$	1	60

Plot the points $(140,4),(145,12),(150,32),(155,46),(160,53),(165,59)$ and $(170,60)$ on a graph paper and join them to get an ogive.

Number of boys $=\mathrm{N}=60$
(i) Median $=\left(\frac{N}{2}\right)^{\text {th }}$ term $=\left(\frac{60}{2}\right)^{\text {th }}$ term $=30^{\text {th }}$ term

Through mark 30 on the Y-axis, draw a horizontal line which meets the curve at point A . Through point A , on the curve draw a vertical line which meets the X -axis at point B . The value of point B on the X-axis is the median, which is 152 .
(ii) Lower quartile $\left(Q_{1}\right)=\left(\frac{N}{4}\right)^{\text {th }}$ term $=\left(\frac{60}{4}\right)^{\text {th }}$ term $=15^{\text {th }}$ term $=148$
(iii) Through mark of 158 on X -axis, draw a verticle line which meets the graph at point C . Then through point C , draw a horizontal line which meets the Y -axis at the mark of 48. Thus, number of boys in the class who are tall $=60-48=12$

