
8 Mean Value Theorems,

Maxima and Minima

8.1 ROLLE’S THEOREM

If a function f (x) is

(i) continuous in the closed interval [a, b]

(ii) derivable in the open interval (a, b) and

(iii) f (a) = f (b),

then there exists atleast one real number c in (a, b) such that f′′′′′ (c) = 0.

(We accept it without proof.)

Geometrical Interpretation

Let A, B be the points on the curve y = f (x) corresponding to the real numbers a, b
respectively.

Since f (x) is continuous in [a, b], the graph of the curve y = f (x) is continuous from
A to B. Again, as f (x) is derivable in (a, b), the curve y = f (x) has a tangent at each point
between A and B. Also as f (a) = f (b) the ordinates of the points A and B are equal i.e.
MA = NB (see fig. 8.1).

Fig. 8.1.

Then Rolle’s theorem asserts that there is atleast one point lying between A and B such
that the tangent at which is parallel to x-axis i.e. there exists atleast one real number c in
(a, b) such that f ′(c) = 0.

There may exist more than one point between A and B the tangents at which are parallel
to x-axis (as shown in fig. 8.1 (ii)) i.e. there may exist more than one real number c in (a, b)

Y

A

P

B

XNMOX′

Y′

Y

P
1

A

P
2

B

N XMOX′

Y′

(i) (ii)

bod
hiy

la
.c
om
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such that f ′(c) = 0. Rolle’s theorem ensures the existence of atleast one real number c in
(a, b) such that f ′(c) = 0.

Remarks

1. Rolle’s theorem fails for the function which does not satisfy even one of the three
conditions.

2. The converse of Rolle’s theorem may not be true, for, f ′(x) may be zero at a point in
(a, b) without satisfying all the three conditions of Rolle’s theorem.

ILLUSTRATIVE EXAMPLES

Example 1. Verify Rolle’s theorem for the following functions :

(a) f (x) = x2 + x – 6 in [– 3, 2]

(b) f (x) = (x2 – 1) (x – 2 ) in [– 1, 2].

Solution. (a) Given f (x) = x2 + x – 6 …(1)

(i) As f (x) is a polynomial function, it is continuous in [– 3, 2],

(ii) f (x) being a polynomial function is derivable in (– 3, 2) and

(iii) f (– 3) = (– 3)2 – 3 – 6 = 0, f (2) = 22 + 2 – 6 = 0 ⇒ f (– 3) = f (2).

Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists
atleast one real number c in (– 3, 2) such that f ′(c) = 0.

Differentiating (1) w.r.t. x, we get f ′(x) = 2x + 1.

Now  f ′(c) = 0 ⇒ 2 c + 1 = 0 ⇒  c = –
  

1

2
.

So there exists –
  

1

2
 ∈ (– 3, 2) such that f ′

  
−⎛⎝

⎞
⎠

1

2
 = 0.

Hence, Rolle’s theorem is verified.

(b) Given f (x) = (x2 – 1) (x – 2) …(1)

(i) Since f (x) is a polynomial function, it is continuous in [– 1, 2],

(ii) f (x) being a polynomial function is derivable in (– 1, 2) and

(iii) f (– 1) = (1 – 1) (1 – 2) = 0, f (2) = (4 – 1) (2 – 2) = 0 ⇒ f (– 1) = f (2).

Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists
atleast one real number c in (– 1, 2) such that f ′(c) = 0.

Differentiating (1) w.r.t. x, we get

f ′(x) = (x2 – 1).1 + (x – 2).2x = 3x2 – 4 x – 1.

Now f ′(c) = 0 ⇒ 3c2 – 4c – 1 = 0

⇒ c = 
  

4 16 4 3 1

2 3

2 7

3

± − − = ±. .( )

.
.

Also – 1 < 
  

2 7

3

2 7

3

− < +
 < 2 ⇒ 

  

2 7

3

2 7

3

− +
 and  both lie in (– 1, 2).

So there exist two real numbers 
  

2 7

3

2 7

3

− +
 and  in (– 1, 2) such that

f ′
  

2 7

3

−⎛
⎝⎜

⎞
⎠⎟

= 0 and f ′
  

2 7

3

+⎛
⎝⎜

⎞
⎠⎟

 = 0.

Hence, Rolle’s theorem is verified.

Example 2. Using Rolle’s theorem, find the point on the curve y = 16 – x2, x ∈ [– 1, 1] where
the tangent is parallel to x-axis.

Solution. Given y = 16 – x2 i.e. f (x) = 16 – x2 …(1)

(i) As f (x) is a polynomial function, it is continuous in [– 1, 1],

(ii) f (x) being a polynomial function is derivable in (– 1, 1) and

(iii) f (– 1) = 16 – (– 1)2 = 15, f (1) = 16 – 12 = 15 ⇒ f (– 1) = f (1).

Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists
atleast one real number c in (– 1, 1) such that f ′(c) = 0.
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Differentiating (1) w.r.t. x, we get f ′(x) = – 2 x.

Now  f ′(c) = 0 ⇒  – 2 c = 0 ⇒ c = 0.

So there exists 0 ∈ (– 1, 1) where f ′(c) = 0 i.e. the tangent is parallel to x-axis.

From (1), when x = 0, y = 16 – 02 = 16.

Hence, there exists the point (0, 16) on the given curve where the tangent is parallel to
x-axis.

Example 3. Verify Rolle’s theorem for the following functions and find point (or points) in the
given interval where derivative is zero :

(a) f (x) = sin x + cos x – 1 in 
  

0,
2

π⎡
⎣⎢

⎤
⎦⎥

(b) f (x) = sin x – sin 2 x in [0, π]

(c) f (x) = e2x (sin 2x – cos 2x) in 
  

π π
8

5

8
,

⎡
⎣⎢

⎤
⎦⎥

(I.S.C. 2006)

(d) f (x) = e 1–x2
 in [– 1, 1].

Solution. (a) Given f (x) = sin x + cos x – 1 …(1)

(i) f (x) is continuous in 
  

0,
2

π⎡
⎣⎢

⎤
⎦⎥
,

 (ii) f (x) is derivable in 
  

0,
2

π⎛
⎝

⎞
⎠  and

(iii) f (0) = sin 0 + cos 0 – 1 = 0 + 1 – 1 = 0,

f
  

π⎛
⎝

⎞
⎠2

 = sin 
  

π
2

 + cos 
  

π
2

 – 1 = 1 + 0 – 1 = 0 ⇒ f (0) = f
  

π⎛
⎝

⎞
⎠2

.

Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists

atleast one real number c in 
  

0,
2

π⎛
⎝

⎞
⎠  such that f ′(c) = 0.

Differentiating (1) w.r.t. x, we get

f ′(x) = cos x – sin x

Now f ′(c) = 0 ⇒ cos c – sin c = 0 ⇒ tan c = 1

⇒ c =
  

π π π π
4

5

4

9

4

3

4
, , , – , … but c ∈ 

    
0

2 4
,
π⎛

⎝
⎞
⎠

π⇒ =c .

So there exists 
  

π π⎛
⎝

⎞
⎠4 2

0 in ,  such that f ′
  

π⎛
⎝

⎞
⎠4

 = 0.

Hence, Rolle’s theorem is verified and c = 
  

π
4

.

(b) Given  f (x) = sin x – sin 2 x …(1)

(i) f (x) is continuous in [0, π].

(ii) f (x) is derivable in (0, π) and

(iii) f (0) = sin 0 – sin 0 = 0 – 0 = 0, f (π) = sin π – sin 2π = 0 – 0 = 0

⇒  f (0) = f (π).

Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists
atleast one real number c in (0, π) such that f ′(c) = 0.

Diff. (1) w.r.t. x, we get f ′(x) = cos x – cos 2x . 2

Now f ′(c) = 0 ⇒ cos c – 2 cos 2c = 0

⇒ cos c – 2 (2 cos2 c – 1) = 0 ⇒ 4 cos2 c – cos c – 2 = 0

⇒  cos c = 
  

1 1 4 4 2

2 4

1 33

8

± − −
= ±. .( )

.
 ⇒ c = cos–1

  

1 33

8

±⎛
⎝⎜

⎞
⎠⎟

.

So there exist two real numbers ‘c’ given by c = cos–1 
1 33

8

±⎛
⎝⎜

⎞
⎠⎟

 in (0, π) such that f ′(c) = 0.

Hence, Rolle’s theorem is verified and c = cos–1 
  

1 33

8

±⎛
⎝⎜

⎞
⎠⎟

.
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(c) Given f (x) = e2x (sin 2 x – cos 2 x) …(1)

(i) f (x) is continuous in 
  

π π
8

5
8

,
⎡
⎣⎢

⎤
⎦⎥
,

(ii) f (x) is derivable in 
  

π π
8

5
8

,
⎛
⎝⎜

⎞
⎠⎟

 and

(iii) f
    

π π ππ π

8 4 4
1

2

1

2
4 4

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

= − =e esin cos  = 0,

f
    

5
8

5
4

5
4 4 4

1

2

1

2

5
4

5
4

5
4

π π π π ππ π π⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= − = − + = − +e e esin cos sin cos  = 0

⇒ f
  

π
8

⎛
⎝⎜

⎞
⎠⎟
 = f

  

5
8
π⎛

⎝⎜
⎞
⎠⎟
.

Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists

atleast one real number c in 
  

π π
8

5
8

,
⎛
⎝⎜

⎞
⎠⎟
 such that f ′ (c) = 0.

Diff. (1) w.r.t. x, we get

f ′ (x) = e2x (cos 2 x . 2 + sin 2 x . 2) + (sin 2 x – cos 2 x) e2x . 2

= 4 e2x sin 2 x.

Now f ′ (c) = 0  ⇒  4 e2c sin 2 c = 0  ⇒  sin 2 c = 0

⇒ 2c = 0,  π, 2π, …, – π, – 2π, …

⇒ c = 0, 
  

π
2

, π, …, –
  

π
2

, – π, … but c ∈ 
  

π π
8

5
8

,
⎛
⎝⎜

⎞
⎠⎟
  ⇒  c = 

  

π
2

.

So there exists 
  

π
2

 in 
  

π π
8

5
8

,
⎛
⎝⎜

⎞
⎠⎟
 such that f ′

  

π
2

⎛
⎝⎜

⎞
⎠⎟
 = 0.

Hence, Rolle’s theorem is verified and c = 
  

π
2

.

(d) Given  f (x) = e 1–x2 …(1)

(i) f (x) is continuous in [– 1, 1], for,

since g(x) = 1 – x2 and h(x) = ex are continuous in [– 1, 1] therefore,

(hog) (x) = h (g(x)) = h (1 – x2) = e1–x2 is also continuous in [– 1, 1],

(ii) f (x) is derivable in (– 1, 1) and

(iii) f (– 1) = e1–1 = e0 = 1, f (1) = e1–1 = e0 = 1 ⇒ f (– 1) = f (1).

Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists
atleast one real number c in (– 1, 1) such that f ′(c) = 0.

Differentiating (1) w.r.t. x, we get

f ′(x) = e1–x2
 (– 2x) = – 2x e1–x2

.

Now f ′(c) = 0 ⇒ – 2c e1– c2
 = 0 ⇒ c = 0.

So there exists 0 in (– 1, 1) such that f ′(0) = 0.

Hence, Rolle’s theorem is verified and c = 0.

Example 4. Verify Rolle’s theorem for the following functions and find point (or points) in the
given interval where derivative is zero :

(a) f (x) = (x – a)m (x – b)n in [a, b], m, n ∈ N.

(b) f (x)  = log 
  

x ab

(a b) x

2 +
+

⎛
⎝⎜

⎞
⎠⎟

 in [a, b], a > 0. (I.S.C. 2012)

Solution. (a) Given f (x) = (x – a)m (x – b)n, m, n ∈ N …(1)

Since m, n ∈ N, f (x) is a polynomial in x.

(i) f (x) is continuous in [a, b],

(ii) f (x) is derivable in (a, b) and

(iii) f (a) = 0, f (b) = 0 ⇒ f (a) = f (b).
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Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists
atleast one real number c in (a, b) such that f ′(c) = 0.

Differentiating (1) w.r.t. x, we get

f ′(x) = (x – a)m n (x – b)n –1 + (x – b)n m (x – a)m–1

= (x – a)m–1 (x – b)n–1 (n (x – a) + m (x – b))

= (x – a)m–1 (x – b)n–1 ((m + n) x – (n a + m b)).

Now f ′(c) = 0 ⇒ (c – a)m–1 (c – b)n–1 ((m + n) c – (n a + m b)) = 0.

But c ≠ a, c ≠ b  ⇒ (m + n) c – (n a + m b) = 0

⇒ c =
  

mb na

m n

+
+

,

which is a point in (a, b), for, it divides [a, b] in the ratio m : n internally.

Thus, there exists a real number c = 
  

mb na

m n

+
+

 in (a, b) such that f ′(c).

Hence, Rolle’s theorem is verified and c = 
  

mb na

m n

+
+

.

(b) Given f (x) = log 
    

x ab

a b x

2 +
+

⎛
⎝⎜

⎞
⎠⎟( )

 = log (x2 + a b) – log (a + b) – log x …(1)

(i) Since a > 0 and log x is continuous for all x > 0, therefore, f (x) is continuous in [a, b],
(ii) f (x) is derivable in (a, b) and

(iii) f (a) = log
    

a ab

a b a

2 +
+

⎛
⎝⎜

⎞
⎠⎟( )

 = log 1 = 0, f (b) = log
    

b ab

a b b

2 +
+

⎛
⎝⎜

⎞
⎠⎟( )

 = log 1 = 0

⇒  f (a) = f (b).
Thus, all the three conditions of Rolle’s theorem are satisfied, therefore, there exists

atleast one real number c in (a, b) such that f ′(c) = 0.
Differentiating (1) w.r.t. x, we get

f ′(x) =
    

1 1 2 1
2 2

2

2
2 0

x ab x

x

x ab x

x ab

x x ab
x

+
=

+
− = −

+
⋅ − −

( )
.

Now  f ′(c) = 0 ⇒ 
    

c ab

c c ab

2

2

−
+( )

 = 0 ⇒ c2 – a b = 0 ⇒ c = ±  ab .

But c ∈ (a, b) ⇒ c =   ab (  Q Geometric mean lies between them)

So there exists a real number c =   ab  in (a, b) such that f ′(c) = 0.

Hence, Rolle’s theorem is verified and c =   ab .

Example 5. It is given that for the function f (x) = x3 + b x2 + a x + 5 on [1, 3] Rolle’s theorem

holds with c = 2 + 
  

1

3
. Find the values of a and b.

Solution. Given f (x) = x3 + bx2 + ax + 5 …(1)

We note that f (x) is continuous in [1, 3] and derivable in (1, 3) for all values of a and b.

Differentiating (1) w.r.t. x, we get

f ′(x) = 3x2 + 2 b x + a …(2)

Since Rolle’s theorem holds for f (x) in [1, 3] with c = 2 + 
  

1

3
, therefore, we must have

f (1) = f (3) and f ′
  

2
1

3
+⎛

⎝
⎞
⎠  = 0

⇒ 1 + b + a + 5 = 27 + 9 b + 3 a + 5 ⇒ 8 b + 2a + 26 = 0

⇒ a + 4b + 13 = 0 …(3)

 and 3
    

2 2 2
1

3

1

3

2

+ + +⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠b  + a = 0

⇒ 3
    

4 4
1

3

4

3

2

3
+ + + +⎛

⎝
⎞
⎠ b

b
 + a = 0
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⇒ (a + 4b + 13) + 
    

12

3

2

3
+ b

 = 0  ⇒ 
    

12

3

2

3
+ b

 = 0 (using (3))

⇒ 2b + 12 = 0 ⇒ b = – 6.

From (3), a – 24 + 13 = 0 ⇒ a = 11.

Hence, a = 11, b = – 6.

Example 6. Discuss the applicability of Rolle’s theorem for the function f (x) = |x| in [– 2, 2].

Solution. Given f (x) = |x|, x ∈ [– 2, 2] …(1)

the graph of f (x) = |x| in [– 2, 2]

is shown in fig. 8.2.

(i) f (x) is continuous in [– 2, 2].

(ii) Differentiating (1) w.r.t. x, we get

f ′(x) =
    

x

x| |
, x ≠ 0

⇒  the derivative of f (x) does not exist at x = 0

⇒  f (x) is not derivable in (– 2, 2).

Thus, the condition (ii) of Rolle’s theorem is not satisfied, therefore, Rolle’s theorem is
not applicable to the function f (x) = |x| in [– 2, 2].

Moreover, f (– 2) = |– 2| = 2 and f (2) = |2| = 2 ⇒ f (– 2) = f (2), so the condition (iii) of
Rolle’s theorem is satisfied.

Further, it is clear from the graph that there is no point of the curve y = |x| in (– 2, 2)
at which the tangent is parallel to x-axis.

EXERCISE 8.1

Verify Rolle’s theorem for the following (1 to 6) functions and find point (or points) in the interval
where derivative is zero :

1. (i) f (x) = x2 – 5x + 4  in [1, 4] (ii) f (x) = x2 + 5x + 6  in [– 3, – 2]

(iii) f (x) = x2 – 8 x + 12  in [2, 6].

2. (i) f (x) = (x – 1) (x – 2)2  in [1, 2] (ii) f (x) = (x – 1) (x – 2) (x – 3)  in [1, 3]

(iii) f (x) = x3 – 12 x  in [0, 2 3 ] (iv) f (x) = x3 – 4 x  in [– 2, 2]

(v) f (x) = 2x3 + x2 – 4x – 2 in 
  
−⎡
⎣⎢

⎤
⎦⎥

1

2
2, .

3. (i) f (x) = cos 2 x  in 
  

– ,
π π⎡

⎣⎢
⎤
⎦⎥4 4

(ii) f (x) = sin x – 1  in 
  

π π⎡
⎣⎢

⎤
⎦⎥2

5

2
, .

4. (i) f (x) = sin 2x  in 
  

0
2

,
π⎡

⎣⎢
⎤
⎦⎥

(ii) f (x) = sin 3 x  in [0, π]

(iii) f (x) = sin2 x  in [0, π] (iv) f (x) = cos 2
    

x – ,
π⎛

⎝⎜
⎞
⎠⎟

π⎡
⎣⎢

⎤
⎦⎥4 2

0 in .

5. (i) f (x) = log (x2 + 2) – log 3  on [– 1, 1]

(ii) f (x) =     4 2− x  on [– 2, 2] (iii) f (x) = sin x + cos x  on 
  

0
2

,
π⎡

⎣⎢
⎤
⎦⎥

(iv) f (x) = |9 – x2| on [– 3, 3].

6. (i) f (x) = e x sin x  on [0, π] (I.S.C. 2005)

(ii) f (x) = ex cos x  on 
  
− π π⎡
⎣⎢

⎤
⎦⎥2 2

, (iii) f (x) = 
    

sin x

ex
  on [0, π]

(iv) f (x) = e x (sin x – cos x)  on 
  

π π⎡
⎣⎢

⎤
⎦⎥4

5

4
, .

7. Apply Rolle’s theorem to find point (or points) on the following curves where the
tangent is parallel to x-axis :

(i) y = x2  in [– 2, 2] (ii) f (x) = – 1 + cos x  in [0, 2π].

1 –

2 –

–2 –1 1 2O X

● ●

>

Fig. 8.2.

Y′

>
>

Y >

X′
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8. Using Rolle’s theorem, find a point on the curve y = sin x + cos x – 1, x ∈ 
  

0
2

,
π⎡

⎣⎢
⎤
⎦⎥
 where

the tangent is parallel to the x-axis. (I.S.C. 2010)
9. If Rolle’s theorem holds for the function f (x) = x3 + ax2 + bx in [1, 2] at the point

x =
  

4

3
, then find the values of a and b. (I.S.C. 2009)

10. Considering the function f (x) = (x – 3) log x, prove that there is atleast one real value
of x in (1, 3) which satisfies x log x = 3 – x.

11. Discuss the applicability of Rolle’s theorem for the following functions in the
indicated intervals :

(i) f (x) = x1/3  in [– 1, 1] (ii) f (x) = x2/3  in [– 1, 1].

12. Discuss the applicability of Rolle’s theorem for the following functions in the
indicated intervals :

(i) f (x) = tan x  in [0, π] (ii) f (x) = sec x  in [0, 2π]

(iii) f (x) = 2 + (x – 1)2/3  in [0, 2] (iv) f (x) = 1 + | x – 2 |  in [0, 4].

8.2 LAGRANGE’S MEAN VALUE THEOREM

If a function f (x) is
(i) continuous in the closed interval [a, b] and

(ii) derivable in the open interval (a, b),
then there exists atleast one real number c in (a, b) such that

f ′′′′′(c) = 
  

f (b) f (a)

b a

−
−

.

Proof. Consider a function g defined by g(x) = f (x) + k x …(1)

where k is a constant (real number) to be chosen in such a way that g(a) = g(b)

⇒ f (c) + k a = f (b) + k b ⇒ k (a – b) = f (b) – f (a)

⇒ k = –
    

f b f a

b a

( ) ( )−
−

…(2)

Now (i) g(x) is continuous in [a, b]

(  Q f (x) is given to be continuous in [a, b] and k x being polynomial function is continuous
for all x ∈ R ⇒ their sum i.e. f (x) + k x is continuous in [a, b])

(ii) g(x) is derivable in (a, b)

(  Q f (x) is given to be derivable in (a, b) and k x being polynomial function is derivable
for all x ∈ R ⇒ their sum i.e. f (x) + k x is derivable in (a, b))

(iii) g(a) = g(b).

Thus, all the three conditions of Rolle’s theorem are satisfied by the function g in [a, b],
therefore, there exists atleast one real number c in (a, b) such that g′ (c) = 0.

Differentiating (1) w.r.t. x, we get
g′(x) = f ′(x) + k.1

Now g′(c) = 0 ⇒ f ′(c) + k = 0 ⇒ k = – f ′(c) …(3)
From (2) and (3), we get

– f ′(c) = – 
    

f b f a

b a

f b f a

b a
f c

( ) ( ) ( ) ( )
( )

−
−

−
−

⇒ ′ = .

Geometrical Interpretation

Let A, B be the points on the curve y = f (x) corresponding to the real numbers a, b respectively.
Since f (x) is continuous in [a, b], the graph of the curve y = f (x) is continuous from

A to B. Again, as f (x) is derivable in (a, b) the curve y = f (x) has a tangent at each point
between A and B. Also as a ≠ b, the slope of the chord AB exists and the slope of the chord

AB = 
    

f b f a

b a

( ) ( )−
−

.
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(i) (ii)
Fig. 8.3.

Then Lagrange’s Mean Value Theorem asserts that there is atleast one point lying between
A and B such that the tangent at which is parallel to the chord AB. There may exist more
than one point between A and B the tangents at which are parallel to the chord AB
(as shown in fig. 8.3 (ii)). Lagrange’s mean value theorem ensures the existence of atleast one

real number c in (a, b) such that f ′(c) = 
    

f b f a

b a

( ) ( )−
−

.

Remarks

1. Lagrange’s mean value theorem fails for the function which does not satisfy even
one of the two conditions.

2. The converse of Lagrange’s mean value theorem may not be true, for, f ′(c) may be equal

to 
    

f b f a

b a

( ) ( )−
−

 at a point c in (a, b) without satisfying both the conditions of

Lagrange’s mean value theorem (see example 4 on page 339).

ILLUSTRATIVE EXAMPLES

Example 1. Verify Lagrange’s mean value theorem for the following functions in the given
interval and find ‘c’ of this theorem.

(a) f (x) = 3 x2 – 5 x + 1 in [2, 5] (I.S.C. 2007)

(b) f (x) = (x – 1) (x – 2) (x – 3) in [0, 4].

Solution. (a) Given f (x) = 3 x2 – 5 x + 1, x ∈ [2, 5] …(1)

(i) f (x) being a polynomial function is continuous in [2, 5]

(ii) f (x) being a polynomial function is derivable in (2, 5).

Thus, both the conditions of Lagrange’s mean value theorem are satisfied, therefore,
there exists atleast one real number c in (2, 5) such that

f ′(c) =
    

f f( ) ( )5 2

5 2

−
−

.

f (5) = 3.52 – 5.5 + 1 = 51, f (2) = 3.22 – 5.2 + 1 = 3.

Differentiating (1) w.r.t. x, we get

f ′(x) = 3.2x – 5.1 + 0  ⇒ f ′(c) = 6 c – 5.

∴ f ′(c) =
    

f f( ) ( )5 2

5 2

−
−

 ⇒ 6c – 5 = 
  

51 3

3

−
 ⇒ 6 c – 5 = 16

⇒ 6 c = 21 ⇒ c = 
  

7

2
.

Thus, there exists c = 
  

7

2
 in (2, 5) such that f ′

  

7

2
⎛
⎝⎜

⎞
⎠⎟

 = 
    

f f( ) ( )5 2

5 2

−
−

.

Hence, Lagrange’s mean value theorem is verified and c = 
  

7

2
.

(b) Given f (x) = (x – 1) (x – 2) (x – 3) = x3 – 6x2 + 11x – 6 …(1)
(i) f (x) being a polynomial function is continuous in [0, 4]
(ii) f (x) being a polynomial function is derivable in (0, 4).

Y

A

P

B

N XMOX′
Y′

Y

P
1

A

P
3

B

P
2

N XMX′ O

Y′
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Thus, both the conditions of Lagrange’s mean value theorem are satisfied, therefore,
there exists atleast one real number c in (0, 4) such that

f ′(c) =
    

f f( ) ( )4 0

4 0

−
−

.

f (4) = 64 – 96 + 44 – 6 = 6, f (0) = 0 – 0 + 0 – 6 = – 6.

Differentiating (1) w.r.t. x, we get

f ′(x) = 3x2 – 12 x + 11  ⇒  f ′(c) = 3c2 – 12c + 11

∴ f ′(c) =
    

f f( ) ( )4 0

4 0

−
−

  ⇒ 3 c2 – 12 c + 11 = 
  

6 6

4 0

− −
−
( )

⇒ 3c2 – 12c + 11 = 3  ⇒ 3 c2 – 12 c + 8 = 0

⇒ c = 
  

12 144 4 3 8

2 3

48

6

2

3
2 2

± − = ± = ±. .

.
.

As 0 < 2 – 
  

2

3
 < 2 + 

  

2

3
 < 4 ⇒ 2 – 

  

2

3
 and 2 + 

  

2

3
 both lie in (0, 4).

Thus, there exist c = 2 ± 
  

2

3
 in (0, 4) such that f ′(c) = 

    

f f( ) ( )4 0

4 0

−
−

.

Hence, Lagrange’s mean value theorem is verified and c = 2 ± 
  

2

3
.

Example 2. Verify Lagrange’s mean value theorem for the following functions in the given
intervals :

(a) f (x) = tan–1 x  in [0, 1]       (b) f (x) =   x x2 −   in [1, 4]. (I.S.C. 2013)

Solution. (a) Given f (x) = tan–1 x, x ∈ [0, 1] …(1)

(i) f (x) is continuous in [0, 1]

(ii) f (x) is derivable in (0, 1).

Thus, both the conditions of Lagrange’s mean value theorem are satisfied, therefore,
there exists atleast one real number c in (0, 1) such that

f ′(c) =
    

f f( ) ( )1 0

1 0

−
−

f (1) = tan–1 (1) = 
  

π
4

, f (0) = tan–1 (0) = 0.

Differentiating (1) w.r.t. x, we get

f ′(x) =
    

1

1

1

12 2+ +
⇒ ′ =

x c
f c( )

∴ f ′(c) =
    

f f

c c

( ) ( )1 0

1 0

1

1
4

0

1

1

1 42 2

−
−

⇒
+

=

π −
⇒

+
= π

⇒ 1 + c2 =
    

4 4 42 1
π π

− π
π

⇒ = − ⇒ = ±c c .

But c ∈ (0, 1)  ⇒  c =
  

4 − π
π

.

Thus, there exists  c = 
  

4 − π
π

 in (0, 1) such that f ′(c) = 
    

f f( ) ( )1 0

1 0

−
−

.

Hence, Lagrange’s mean value theorem is verified.

(b) Given f (x) =     x x2 − , x ∈ [1, 4] …(1)

(i) Since g(x) = x2 – x is continuous on R and h(x) =   x  is continuous in [0, ∞), therefore,

(hog) (x) = h (g(x)) = h (x2 – x) =     x x2 −  is continuous for all x such that x2 – x ≥ 0

⇒      x x2 −  is continuous in (–∞, 0] ∪ [1, ∞)

⇒      x x2 −  is continuous in [1, 4].
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(ii) Differentiating (1) w.r.t. x, we get

f ′(x) =
  

1

2
(x2 – x)–1/2 (2x – 1) = 

    

2 1

2 2

x

x x

−

−

which exists for all x such that x2 – x > 0 i.e. for x in (–∞, 0) ∪ (1, ∞)

⇒  f (x) is derivable for all x in (1, 4).

Thus, both the conditions of Lagrange’s mean value theorem are satisfied, therefore,
there exists atleast one real number c in (1, 4) such that

f ′(c) =
    

f f( ) ( )4 1

4 1

−
−

⇒
    

2 1

2 2

c

c c

−

−
=

  

4 4 1 1

4 1

12

3

2

3

2 2− − −
−

= =

⇒ 3(2c – 1)2 = 16(c2 – c) ⇒ 4c2 – 4c – 3 = 0

⇒ (2c – 3) (2c + 1) = 0 ⇒ c = 
  

3

2

1

2
, − .

Thus, there exists c = 
  

3

2
 ∈ (1, 4) such that f ′(c) = 

    

f f( ) ( )4 1

4 1

−
−

.

Hence, Lagrange’s mean value theorem is verified.

Example 3. Find a point on the graph of y = x3 where the tangent is parallel to the chord
joining (1, 1) and (3, 27).

Solution. Let us apply Lagrange’s mean value theorem to the function

f (x) = x3 in the interval [1, 3] …(1)

(i) f (x) being polynomial is continuous in [1, 3]

(ii) f (x) being polynomial is derivable in (1, 3).

Thus, both the conditions of Lagrange’s mean value theorem are satisfied by the function
f (x) in [1, 3], therefore, there exists atleast one real number c in (1, 3) such that

f ′(c) =
    

f f( ) ( )3 1

3 1

−
−

.

f (3) = 33 = 27 and f (1) = 13 = 1.

Differentiating (1) w.r.t. x, we get

f ′(x) = 3x2 ⇒ f ′(c) = 3c2.

Now f ′(c) = 
    

f f( ) ( )3 1

3 1

−
−

 ⇒ 3 c2 = 
  

27 1

3 1

−
−

 ⇒ 3c2 = 13

⇒ c2 = 
    

13

3

39

9

39

3
= ⇒ = ±c .

But c ∈ (1, 3)  ⇒  c = 
  

39

3
.

When  x = 
  

39

3
, from (1), y = 

  

13 39

9
.

Hence, there exists a point 
  

39

3

13 39

9
,

⎛
⎝⎜

⎞
⎠⎟
 on the given curve y = x3 where the tangent is

parallel to the chord joining the points (1, 1) and (3, 27).

Example 4. Does the Lagrange’s mean value theorem apply to f (x) = x1/3, – 1 ≤ x ≤ 1? What
conclusions can be drawn?

Solution. Given f (x) = x1/3, x ∈ [– 1, 1] …(1)
(i) f (x) is continuous in [– 1, 1].
(ii) Differentiating (1) w.r.t. x, we get

f ′(x) =
    

1

3

1

3
2 3

2 3
x

x
− = , x ≠ 0 …(2)
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⇒ the derivative of f (x) does not exist at x = 0
⇒ f (x) is not derivable in (– 1, 1).
Thus, the condition (ii) of Lagrange’s mean value theorem is not satisfied by the function

f (x) = x1/3 in [– 1, 1] and hence Lagrange’s mean value theorem is not applicable to the given
function f (x) = x1/3 in [– 1, 1].

Conclusion. However, from (2), f ′(c) = 
    

1

3 2 3c
, c ≠ 0

Also f (– 1) = (– 1) 1/3 = – 1, f (1) = 11/3 = 1
(we have taken only real values)

∴ f ′(c) =
    

f f

c

( ) ( )

( )

( )

( )

1 1

1 1

1

3

1 1

1 1

2

22 3

− −
− −

⇒ =
− −
− −

=  = 1

⇒ c2/3 =
    

1

3

1

27

1

3 3
2⇒ = ⇒ = ±c c .

As – 1 < – 
    

1

3 3

1

3 3

1

3 3
1< < ⇒ = ±c  both lie in (– 1, 1).

Thus, we find that there exist two real numbers c = ± 
  

1

3 3
 in (– 1, 1) such that

f ′(c) = 
    

f f( ) ( )

( )

1 1

1 1

− −
− −

. It follows that the converse of Lagrange’s mean value theorem may not be

true.

EXERCISE 8.2

Verify Lagrange’s mean value theorem for the following (1 to 5) functions in the given intervals.
Also find ‘c’ of this theorem :

1. (i) f (x) = x (x – 2)  in [1, 3] (ii) f (x) = x2 + x – 1  in [0, 4]

(iii) f (x) = 2x2 – 10 x + 29  in the interval [2, 7]

(iv) f (x) = x(x + 4)2  in [0, 4].

2. (i) f (x) = x3 – 3x – 1  in 
  
−⎡
⎣⎢

⎤
⎦⎥

11

7

13

7
,

(ii) f (x) = x(x – 1) (x – 2)  in 
  

0
1

2
,⎡

⎣⎢
⎤
⎦⎥

(I.S.C. 2000)

(iii) f (x) = (x – 3) (x – 6) (x – 9)  in [3, 5].

3. (i) f (x) = x + 
    

1

x
  in [1, 3] (ii) f (x) = 

    

1

4 1x −
  in [1, 4]

(iii) f (x) = 
    

2 3

3 2

x

x

+
−

  in [1, 5] (iv) f (x) = x2/3  in [0, 1].

4. (i) f (x) = sin x  in 
  

0
2

,
π⎡

⎣⎢
⎤
⎦⎥

(ii) f (x) = x – 2 sin x  in [– π, π  ]

(iii) f (x) = 2 sin x + sin 2x   in [0, π].

5. (i) f (x) = log x  on [1, 2] (ii) f (x) =     x2 4–   on [2, 4]

(iii) f (x) = sin x – sin 2x  on [0, π] (I.S.C. 2011)

6. Find a point on the parabola y = (x – 3)2 where the tangent is parallel to the chord
joining (3, 0) and (4, 1).

7. Find a point on the curve y = x3 – 3x where the tangent to curve is parallel to the
chord joining (1, – 2) and (2, 2).

8. Show that the function f (x) = x2 – 6x + 1 satisfies the Lagrange’s mean value theorem.
Also find the co-ordinates of a point at which the tangent to the curve represented by
the above function is parallel to the chord joining A (1, – 4) and B (3, – 8).   (I.S.C. 2004)

Hint. Check Lagrange’s mean value theorem for the given function in the interval
[1, 3].
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Y

XD

Fig. 8.4.

Fig. 8.6.

Fig. 8.5.

9. Using Lagrange’s mean value theorem, find a point on the curve y =     x − 2  defined
in the interval [2, 3] where the tangent is parallel to the chord joining the end points
of the curve. (I.S.C. 2008)

10. Discuss the applicability of Lagrange’s mean value theorem for the following
functions in the indicated intervals.

(i) f (x) = |x|  in [– 1, 1] (ii) f (x) = 1 – (2 – x)2/3  in [1, 3].

8.3 MAXIMA AND MINIMA

8.3.1 Absolute maxima and absolute minima

Let f be a real valued function defined on D (subset of R), then

(i) f is said to have absolute maxima at x = c (in D) iff f (x) ≤ f (c) for all  x ∈ D, and c is
called point of absolute maxima and f (c) is called absolute maximum (or greatest) value

of f on D.

(ii) f is said to have absolute minima at x = d (in D) iff f (d) ≤ f (x) for all x ∈ D, and d is
called point of absolute minima and f (d) is called absolute minimum (or smallest) value

of f on D.

Obviously, absolute maximum and absolute
minimum values of a function (if they exist) are
unique. However, absolute maximum or absolute
minimum values of a given function f on D
(subset of R) may be obtained at more than one
points. Also it is not essential that a given function
must have maxima or minima in its domain.

For example :

(i) Consider the function f (x) = sin x  in 
  
− π π⎡
⎣⎢

⎤
⎦⎥

,
3

2
.

Its graph is shown in fig. 8.5. Here c = 
  

π
2

 is a point

of maxima and maximum value = f
  

π⎛
⎝

⎞
⎠

π=
2 2

sin  = 1.

There are two points of minima,

d = –
  

π π
2

 or 
3

2
 and the minimum value

= f
  
− π⎛
⎝⎜

⎞
⎠⎟

− π⎛
⎝⎜

⎞
⎠⎟

π= = −
2 2 2

sin sin  = – 1

or f
  

3

2

3

2 2

π⎛
⎝⎜

⎞
⎠⎟

π π= = −sin sin  = – 1.

(ii) Consider the function

f (x) = cos x  in 

  
− ππ⎡
⎣⎢

⎤
⎦⎥2

2, .

Its graph is shown in fig. 8.6.

Here d = π is a point of minima and
minimum value = f (π) = cos π = – 1.

There are two points of maxima, c = 0, 2 π and the maximum value

= f (0) = cos 0 = 1 or f (2 π) = cos 2 π = cos 0 = 1.

f (d)

f (c)

d cOX′

Y′

X′

Y′

Y′

X′

bod
hiy

la
.c
om



UNDERSTANDING ISC MATHEMATICS -XIIA-342

Fig. 8.8.

Fig. 8.9.

(iii) Consider the function f (x) = x2,

Df = R and Rf = [0, ∞).

The graph of f is shown in fig. 8.7.

The function f has minima at x = 0 and minimum value

= f (0) = 0. Note that f has no maxima.

(iv) Consider the function f (x) = 2 x – x2,

Df = R. It can be written as

y = 2 x – x2 = 1 – (x – 1)2,

Rf = (– ∞, 1].

The graph of f is shown in fig. 8.8.

The function f has maxima at x = 1 and maximum value

= f (1) = 2 . 1 – 12 = 1.

Note that f has no minima.

8.3.2 Local maxima and local minima

Let f be a real valued function defined on D (subset of R), then

(i) f is said to have a local (or relative)
maxima at x = c (in D) iff there exists a positive
real number δ such that f (x) ≤ f (c) for all x in
(c – δ , c + δ ) i.e. f (x) ≤ f (c) for all x in the
immediate neighbourhood of c, and c is called point
of local maxima and f (c) is called local
maximum value.

(ii) f is said to have local (or relative)
minima at x = d (in D) iff there exists some
positive real number δ such that f (d) ≤ f (x) for all
x ∈ (d – δ, d + δ ) i.e.  f (d) ≤ f (x) for all x in the
immediate neighbourhood of d, and d is called
point of local minima and f (d) is called local
minimum value.

Geometrically, a point c in the domain of the given function f is a point of local maxima
or local minima according as the graph of f has a peak or trough (cavity) at c.

(iii) a point (in D) which is either a point of local maxima or a point of local minima is called
an extreme point, and the value of the function at this point is called an extreme value.

Remarks
1. A local maximum (minimum) value may not be the absolute maximum

(minimum) value.
2. A local maximum value at some point may be less than a local minimum value

of the function at another point.

Stationary (or Turning) Point

Let f be a real valued function defined on D (subset of R), then a point c (in D) is called a stationary
(or turning or critical) point of f iff f is differentiable at x = c and f ′ (c) = 0.

However, it is not essential that an extreme point is a stationary point, and a stationary point
is an extreme point.

For example :
(i) Consider the function f (x) = sin x, Df = R. A portion of the graph of this function is

shown in fig. 8.5.

Fig. 8.7.

O
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11. Find the area of the largest isosceles triangle having perimeter 18 metres.

Hint. Let x be one of two equal sides, then base = 18 – 2 x, then

area = A =     9 9 9 9 18 2( ) ( ) ( ( ))− − − −x x x , 
  

9

2
 < x < 9, for, if x < 

  

9

2
, then the sum

of two sides is smaller than the third side.

12. Find a point on the hypotenuse of a given right-angled triangle from which the
perpendiculars can be dropped on the other sides to form a rectangle of maximum area.

Hint. Let l be the length of the hypotenuse of the given right-angled triangle ABC at

B and ∠CAB = α (in radian measure), 0 < α < 
  

π
2

.

As ΔABC is given, l and α are fixed. Let P be a point on AC and AP = x, then
PC = l – x.

13. Divide the number 4 into two positive numbers such that the sum of square of one
and the cube of other is minimum.

14. The perimeter of a sector of a circle is p. Show that its area is maximum when its

radius is 
    

p

4
.

15. Find the minimum distance from the point (4, 2) to the parabola y2 = 8 x.

16. Find the point on the curve y2 = 2x which is nearest to the point (1, – 4).

17. Find the dimensions of the rectangle of maximum area that can be inscribed in the
portion of the parabola y2 = 4 p x intercepted by the line x = a.

18. A point on the hypotenuse of a right angled triangle is at distances a and b from the
sides. Show that the minimum length of the hypotenuse is (a2/3 + b2/3)3/2.

19. Show that the maximum volume of a cylinder which can be inscribed in a cone of

height h and semi-vertical angle 30° is 
  

4

81
π h3.

20. A cylinder is such that the sum of its height and circumference of its base is
10 metres. Find the maximum volume of the cylinder.

Hint. If h metres be the height and r metres be the radius of the base of the cylinder,
then 2 π r + h = 10  ⇒ h = 10 – 2 π r.
V (volume of cylinder) = π r 2 h = π r 2 (10 – 2 π r).

21. Find the semi-vertical angle of the cone of maximum curved surface that can be
inscribed in a sphere of radius R.

ANSWERS

EXERCISE 8.1

1. (i) 
  

5

2
  (ii) –

  

5

2
  (iii) 4. 2. (i) 

  

4
3

  (ii) 2 ± 
  

1

3
  (iii) 2  (iv) ±

  

2

3    (v) 
  

2

3
.

3. (i) 0  (ii) 
  

3

2

π
. 4. (i) 

  

π
4

  (ii) 
  

π π π
6 2

5

6
, ,   (iii) 

  

π
2

(iv) 
  

π
4

.

5. (i) 0  (ii) 0  (iii) 
  

π
4

  (iv) 0. 6. (i) 
  

3

4

π
  (ii) 

  

π
4

  (iii) 
  

π
4

  (iv) π.

7. (i) (0, 0)      (ii) (π, – 2). 8.

  

π
4

2 1, –⎛
⎝⎜

⎞
⎠⎟

. 9. a = – 5, b = 8.

11. Not applicable in both parts (i) and (ii), for :

(i) not derivable at x = 0 (ii) not derivable at x = 0.
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12. Not applicable in parts (i) to (iv), for :

(i) discontinuous at 
  

π
2

(ii) discontinuous at 
  

π π
2

3

2
,

(iii) not derivable at x = 1 (iv) not derivable at x = 2.

EXERCISE 8.2

1. (i) 2 (ii) 2 (iii)
  

9

2
(iv)

  

− +8 4 13

3
.

2. (i) ± 1 (ii) 1 – 
  

21

6
(iii) 6 – 

  

39

3
.

3. (i)   3 (ii)
  

1 3 5

4

+
(iii)

  

1

3
2 13+( ) (iv)

  

8

27
.

4. (i) cos–1

  

2

π
⎛
⎝

⎞
⎠ (ii) ±

  

π
2

(iii)
  

π
3

.

5. (i) log2 e (ii)   6 (iii) cos–1 
  

1 33

8

±⎛
⎝⎜

⎞
⎠⎟

.

6.

  

7

2

1

4
,⎛

⎝
⎞
⎠ . 7.

  

7

3

2

3

7

3
, −

⎛
⎝⎜

⎞
⎠⎟

. 8. (2, – 7). 9.

  

9

4

1

2
,⎛

⎝
⎞
⎠ .

10. Not applicable in both (i) and (ii), for :

(i) not derivable at x = 0 (ii) not derivable at x = 2.

EXERCISE 8.3

1. (i) Minimum value = 3, no maximum value.

(ii) Maximum value = 7, no minimum value.

2. (i) Minimum value = – 2, no maximum value.

(ii) Maximum value = 9, no minimum value.

3. (i) Neither maximum nor minimum.

(ii) Minimum value = 0, no maximum value.

4. (i) Maximum value = 3, no minimum value.

(ii) Maximum value = 6, minimum value = 4.

5. (i) Maximum value = 4, minimum value = 2.

(ii) Maximum value = – 2, minimum value = – 3.

6. (i) Maximum value = 5, minimum value = – 1.

(ii) Maximum value = 5, minimum value = – 5.

7. – 2. 8. 1. 9. x = 
  

π
4

.

11. Maximum Minimum Point of Point of
value value maxima minima

(i) 8 – 8 x = 2 x = – 2

(ii) 19 3 x = – 3 x = 1

(iii) 738 8 x = 10 x = 0

(iv) 25 – 39 x = 0 x = 2
(v) 2π 0 x = 2π x = 0

(vi)   2 – 1 x = 
π
4

x = π

(vii) 7 3 x = 3 x = – 1

(viii)
  

3

2
– 3 x = 

  

π π
6

5

6
, x = 

  

π
2

.

12. 18; – 9. 13.
  

π π
4

5

4
, .

14. Maximum value = 2π, minimum value = 0.
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