11

Applications of Definite Integrals

Definite integrals have a wide range of applications. In this chapter, we shall use definite integrals in computing the areas of bounded regions.

11.1 AREAS OF BOUNDED REGIONS

If the function f is continuous and non-negative in the closed interval $[a, b]$, then the area of the region below the curve $y=f(x)$, above the x-axis and between the ordinates $x=a$ and $x=b$ or briefly the area of the region bounded by the curve $y=f(x)$, the x-axis and the ordinates $x=a, x=b$ is given by $\int_{a}^{b} f(x) d x$ or $\int_{a}^{b} y d x$.

Proof. Let AB be the curve $y=f(x)$ between $\mathrm{AC}(x=a)$ and $\mathrm{BD}(x=b)$, then the required area is the area of the shaded region ACDB.

Let $\mathrm{P}(x, y)$ be a point on the curve $y=f(x)$ and $\mathrm{Q}(x+\delta x, y+\delta y)$ be a neighbouring point on the curve, then MP $=y, \mathrm{NQ}=y+\delta y$ and $\mathrm{MN}=\delta x$. Let A be the area of the region ACMP and $\mathrm{A}+\delta \mathrm{A}$ be the area of the region $A C N Q$, then $\delta A=$ area of region PMNQ .

Area of rectangle $\mathrm{PMNR}=y \delta x$ and area of rectangle $\mathrm{SMNQ}=(y+\delta y) \delta x$.

From fig. 11.1, area of rectangle PMNR \leq area of region $\mathrm{PMNQ} \leq$ area of rectangle SMNQ
$\Rightarrow \quad y \delta x \leq \delta \mathrm{A} \leq(y+\delta y) \delta x$

Fig. 11.1.
$\Rightarrow \quad y \leq \frac{\delta \mathrm{A}}{\delta x} \leq y+\delta y$
When $\mathrm{P} \rightarrow \mathrm{Q}, \delta x \rightarrow 0, \delta y \rightarrow 0$ and $\frac{\delta \mathrm{A}}{\delta x} \rightarrow \frac{d \mathrm{~A}}{d x}$.
From (i), $\underset{\delta x \rightarrow 0}{\operatorname{Lt}} y \leq \underset{\delta x \rightarrow 0}{\operatorname{Lt}} \frac{\delta \mathrm{~A}}{\delta x} \leq \underset{\delta y \rightarrow 0}{\operatorname{Lt}}(y+\delta y)$
$\Rightarrow \quad y \leq \frac{d \mathrm{~A}}{d x} \leq y \Rightarrow y=\frac{d \mathrm{~A}}{d x}$.
Integrating both sides w.r.t. x between the limits a to b, we get

$$
\begin{aligned}
\int_{a}^{b} y d x & =\int_{a}^{b} \frac{d \mathrm{~A}}{d x} d x=[\mathrm{A}]_{a}^{b} \\
& =(\text { value of area A when } x=b)-(\text { value of area A when } x=a) \\
& =\text { area ACDB }-0=\text { area ACDB. }
\end{aligned}
$$

If a function f is continuous and non-positive in the closed interval $[a, b]$, then the curve $y=f(x)$ lies below the x-axis and the definite integral $\int_{a}^{b} f(x) d x$ is negative. Since the area of a region is always non-negative, the area of the region bounded by the curve $y=f(x)$, the x-axis and the ordinates $x=a, x=b$ is given by $\left|\int_{a}^{b} f(x) d x\right|$ or $\left|\int_{a}^{b} y d x\right|$.

Fig. 11.2.

Hence, if the curve $y=f(x)$ is continuous and does not cross the x-axis, then the area of the region bounded by the curve $y=f(x)$, the x-axis and the ordinates $x=a$ and $x=b$ is given by $\left|\int_{a}^{b} f(x) d x\right|$ or $\left|\int_{a}^{b} y d x\right|$.

Similarly, if the curve $x=g(y)$ is continuous and does not cross the y-axis, then the area of the region bounded by the curve $x=g(y)$, the y-axis and the abscissae $y=c, y=d$ is given by

$$
\left|\int_{c}^{d} g(y) d y\right| \text { or }\left|\int_{c}^{d} x d y\right|
$$

Fig. 11.3.

Remark. It may be noted that when sign of $f(x)$ is not known, then $\int_{a}^{b} f(x) d x$ may not represent the area enclosed between the curve $y=f(x)$, the x-axis and the ordinates $x=a$ and $x=b$, whereas $\int^{b} \mid f(x) \backslash d x$ equals the area enclosed between the graph of the curve $y=f(x)$, the x-axis and the ordinates $x=a$ and $x=b$.
For example, let us consider the integrals $\int_{-1}^{1} x d x$ and $\int_{-1}^{1}|x| d x$.
First integral $=\int_{-1}^{1} x d x=\left[\frac{x^{2}}{2}\right]_{-1}^{1}=\frac{1}{2}\left(1^{2}-(-1)^{2}\right)=0$, whereas second integral

$$
=\int_{-1}^{1}|x| d x=\int_{-1}^{0}(-x) d x+\int_{0}^{1} x d x
$$

(Common sense suggests this division as $|x|=-x$ in $[-1,0]$ and $|x|=x$ in $[0,1]$).

$$
=\left[-\frac{x^{2}}{2}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=-\frac{1}{2}(0-1)+\frac{1}{2}(1-0)=1
$$

Fig. 11.4.

Clearly, the area enclosed between $y=x$, the x-axis and the ordinates $x=-1$ and $x=1$ is not zero.

It follows that if the graph of a function f is continuous in $[a, b]$ and crosses the x-axis at finitely many points in $[a, b]$, then the area enclosed between the graph of the curve $y=f(x)$, the x-axis and the ordinates $x=a, x=b$ is given by $\int_{a}^{b}|f(x)| d x$ or $\int_{a}^{b}|y| d x$.

11.1.1 Area bounded between curves

If $f(x), g(x)$ are both continuous in $[a, b]$ and $0 \leq g(x) \leq f(x)$ for all $x \in[a, b]$, then the area of the region between the graphs of $y=f(x)$, $y=g(x)$ and the ordinates $x=a, x=b$ is given by

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & -\int_{a}^{b} g(x) d x \\
& =\int_{a}^{b}(f(x)-g(x)) d x
\end{aligned}
$$

Fig. 11.5.

Fig. 11.6.

Remarks

1. If $f(x), g(x)$ are both continuous in $[a, b]$ and $g(x) \leq f(x)$ for all $x \in[a, b]$, then the above formula also holds when one or both of the curves $y=f(x)$ and $y=g(x)$ lie partially or completely below the x-axis.
2. If the graphs of the curves $y=f(x)$ and $y=g(x)$ cross each other at finitely many points, then the area enclosed between the graphs of the two curves and the ordinates $x=a$ and $x=b$ is given by $\int_{a}^{b}|f(x)-g(x)| d x$.
3. Similarly, the area of the region between the graphs of $x=f(y), x=g(y)$ and the abscissae $y=c, y=d$ is given by $\int_{c}^{b}|f(y)-g(y)| d y$.

ILLUSTRATIVE EXAMPLES

Example 1. Find the area of the region bounded by $y^{2}=4 x, x=1, x=4$ and the x-axis in the first quadrant.

Solution. The given curve is $y^{2}=4 x$ which represents a right hand parabola with vertex at (0,0). The area bounded by $y^{2}=4 x, x=1, x=4$ and the x-axis is shown shaded in the figure.

$$
\begin{aligned}
& \text { Required area }=\int_{1}^{4} y d x=\int_{1}^{4} 2 \sqrt{x} d x \\
& \begin{aligned}
\left(\because y^{2}=4 x\right. & \Rightarrow y=2 \sqrt{x} \text { in the first quadrant }) \\
& =2 \cdot\left[\frac{x^{3 / 2}}{\frac{3}{2}}\right]_{1}^{4}=\frac{4}{3}\left[4^{3 / 2}-1^{3 / 2}\right] \text { sq. unis } \\
& =\frac{4}{3}[8-1] \text { sq. units }=\frac{28}{3} \text { sq. units. }
\end{aligned}
\end{aligned}
$$

Fig. 11.7.

Example 2. Draw a rough sketch of the curve $x^{2}+y=9$ and find the area enclosed by the curve, the x-axis and the lines $x+1=0$ and $x-2=0$.
(I.S.C. 2009)

Solution. The given curve is $x^{2}+y=9$
It can be written as $x^{2}=9-y$
$\Rightarrow(x-0)^{2}=-(y-9)$
which represents a downward parabola with vertex at (0,9).

The parabola meets the x-axis i.e. $y=0$ at $x^{2}=9$ i.e. at $x=-3$, 3 .

A rough sketch of the curve is shown in fig. 11.8.
The given lines are $x+1=0$ and $x-2=0$ i.e. $x=-1$ and $x=2$.

The area enclosed by the curve, the x-axis and the given lines is shown shaded in fig. 11.8.

Fig. 11.8.
\therefore Required area $=\int_{-1}^{2} y d x=\int_{-1}^{2}\left(9-x^{2}\right) d x$

$$
\begin{aligned}
& =\left[9 x-\frac{x^{3}}{3}\right]_{-1}^{2}=\left(\left(18-\frac{8}{3}\right)-\left(-9+\frac{1}{3}\right)\right) \text { sq. units } \\
& =\left(27-\frac{8}{3}-\frac{1}{3}\right) \text { sq. units }=24 \text { sq. units. }
\end{aligned}
$$

Example 3. Determine the area enclosed between the curve $y=4 x-x^{2}$ and the x-axis.
Solution. Given curve is $y=4 x-x^{2}$.
It can be written as $x^{2}-4 x=-y \Rightarrow(x-2)^{2}=-(y-4)$
which represents a downward parabola with vertex at $(2,4)$.

The parabola meets x-axis i.e. $y=0$ at $4 x-x^{2}=0$ i.e. at $x=0, x=4$.
\therefore The area enclosed between the curve and the x-axis

$$
\begin{aligned}
& =\int_{0}^{4} y d x=\int_{0}^{4}\left(4 x-x^{2}\right) d x=\left[4 \cdot \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{4} \\
& =\left(32-\frac{64}{3}\right)-(0-0)=\frac{32}{3} \text { sq. units. }
\end{aligned}
$$

Fig. 11.9.

Alternatively. Since the parabola is symmetrical about the line $x=2$,

$$
\begin{aligned}
\text { required area } & =2 \int_{0}^{2}\left(4 x-x^{2}\right) d x=2\left[4 \cdot \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =2\left[\left(8-\frac{8}{3}\right)-(0-0)\right] \text { sq. units }=2 \cdot \frac{16}{3} \text { sq. units }=\frac{32}{3} \text { sq. units. }
\end{aligned}
$$

Remark. In case of symmetrical closed area, find the area of the smallest part and multiply the result by the number of symmetrical parts.

Example 4. Draw a rough sketch of the curve $y^{2}+1=x, x \leq 2$. Find the area enclosed by the curve and the line $x=2$.
(I.S.C. 2008)

Solution. Given curve is $y^{2}+1=x$.
It can be written as $y^{2}=x-1$, which represents a right hand parabola with vertex at $\mathrm{A}(1,0)$.

The parabola meets the line $x=2$ at when $y^{2}=1$ i.e. $y=1,-1$.

A rough sketch of the curve $y^{2}+1=x, x \leq 2$ is shown in fig. 11.10. The area bounded by the curve $y^{2}=x-1$ and the line $x=2$ is shown shaded in the figure. Since the given area is symmetrical about x-axis,
required area $=2$ (area of the region bounded by

Fig. 11.10. the curve $y^{2}=x-1$, the x-axis and the line $x=2$)

$$
\begin{aligned}
& =2 \int_{1}^{2} y d x=2 \int_{1}^{2} \sqrt{x-1} d x \quad\left(\because y^{2}=x-1 \Rightarrow y=\sqrt{x-1} \text { in the first quadrant }\right) \\
& =2 \cdot\left[\frac{(x-1)^{3 / 2}}{\frac{3}{2}}\right]_{1}^{2}=\frac{4}{3}\left[1^{3 / 2}-0\right] \text { sq. units }=\frac{4}{3} \text { sq. units. }
\end{aligned}
$$

Example 5. Draw a rough sketch of the curve $y=x^{2}-5 x+6$ and find the area bounded by the curve and the x-axis.
(I.S.C. 2010)

Solution. The given curve is $y=x^{2}-5 x+6$.
It can be written as $x^{2}-5 x+\frac{25}{4}=y+\frac{1}{4}$
$\Rightarrow \quad\left(x-\frac{5}{2}\right)^{2}=y-\left(-\frac{1}{4}\right)$, which represents an upward parabola with vertex at $\left(\frac{5}{2},-\frac{1}{4}\right)$.

A rought sketch of the curve is shown in fig. 11.11. The parabola meets the x-axis i.e. $y=0$ at

$$
x^{2}-5 x+6=0 \text { i.e. at }(x-2)(x-3)=0
$$

i.e. at $x=2, x=3$.

Fig. 11.11.

As the required portion of the curve lies below x-axis, y is negative.

$$
\begin{aligned}
\therefore \quad \text { Required area } & =\left|\int_{2}^{3} y d x\right|=\left|\int_{2}^{3}\left(x^{2}-5 x+6\right) d x\right| \\
& =\left|\left[\frac{x^{3}}{3}-5 \cdot \frac{x^{2}}{2}+6 x\right]_{2}^{3}\right|=\left|\left(9-\frac{45}{2}+18\right)-\left(\frac{8}{3}-10+12\right)\right| \text { sq. units } \\
& =\left|\frac{9}{2}-\frac{14}{3}\right| \text { sq. units }=\left|-\frac{1}{6}\right| \text { sq. units }=\frac{1}{6} \text { sq. units. }
\end{aligned}
$$

Example 6. Find the area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$.
Solution. The given curve is $y^{2}=4 x$ which represents a right hand parabola with vertex $(0,0)$. The area bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is shown shaded in fig. 11.12.

$$
\begin{aligned}
\text { Required area }= & \int_{0}^{3} x d y=\int_{0}^{3} \frac{y^{2}}{4} d y \\
& \left(\because y^{2}=4 x \Rightarrow x=\frac{y^{2}}{4}\right) \\
= & \frac{1}{4} \cdot\left[\frac{y^{3}}{3}\right]_{0}^{3}=\frac{1}{12}[27-0] \\
= & \frac{9}{4} \text { sq. units. }
\end{aligned}
$$

Fig. 11.12.

Example 7. Find the area of the region bounded by the curve $y=x^{2}$ and the line $y=4$.
Solution. The given curve is $y=x^{2}$ which represents an upward parabola with vertex at $(0,0)$. The area bounded by the curve and the line $y=4$ is shown shaded in fig. 11.13.

Since the area is symmetrical about y-axis,
required area $=2$ (area of the region bounded by $y=x^{2}$, the y-axis and the line $y=4$)

$$
=2 \int_{0}^{4} x d y=2 \int_{0}^{4} \sqrt{y} d x
$$

$\left(\because x^{2}=y \Rightarrow x=\sqrt{y}\right.$ in the first quadrant $)$

$$
=2 \cdot\left[\frac{x^{3 / 2}}{\frac{3}{2}}\right]_{0}^{4}=\frac{4}{3}\left[4^{3 / 2}-0\right]=\frac{4}{3}[8-0]=\frac{32}{3} \text { sq. units. }
$$

Example 8. Sketch and shade the area of the region lying in the first quadrant and bounded by $y=9 x^{2}, x=0, y=1$ and $y=4$. Find the area of the shaded region.
(I.S.C. 2004)

Solution. The given curve is $y=9 x^{2}$. It can be written as $x^{2}=\frac{y}{9}$ which represents an upward parabola with vertex at $(0,0)$. The area lying in the first quadrant and bounded by $y=9 x^{2}, x=0, y=1$ and $y=4$ is shown shaded in fig. 11.14.

The required area $=\int_{1}^{4} x d y=\int_{1}^{4} \sqrt{\frac{y}{9}} d y$ $\left(\because x^{2}=\frac{y}{9} \Rightarrow x=\sqrt{\frac{y}{9}}\right.$ in the first quadrant. $)$

$$
\begin{aligned}
& =\frac{1}{3}\left[\frac{y^{3 / 2}}{\frac{3}{2}}\right]_{1}^{4}=\frac{2}{9}\left[4^{3 / 2}-1^{3 / 2}\right] \\
& =\frac{2}{9}(8-1)=\frac{14}{9} \text { sq. units. }
\end{aligned}
$$

Fig. 11.14.

Example 9. Find the area bounded by the curve $x=8+2 y-y^{2}$, the y-axis and the lines $y=-1, y=3$.

Solution. The given curve is $x=8+2 y-y^{2}$.
It can be written as

$$
y^{2}-2 y=-x+8
$$

$\Rightarrow(y-1)^{2}=-(x-9)$ which represents a left hand parabola with vertex at $(9,1)$.

Required area

$$
\begin{aligned}
& =\int_{-1}^{3} x d y=\int_{-1}^{3}\left(8+2 y-y^{2}\right) d y \\
& =\left[8 y+2 \cdot \frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{-1}^{3} \\
& =(24+9-9)-\left(-8+1+\frac{1}{3}\right)=\frac{92}{3} \text { sq. units. }
\end{aligned}
$$

Fig. 11.15.

Example 10. Draw a rough sketch of the graph of the function $y=2 \sqrt{1-x^{2}}, x \in[0,1]$ and evaluate the area enclosed between the curve and the axes.

Solution. The given curve is $y=2 \sqrt{1-x^{2}}$
$\Rightarrow \frac{y^{2}}{4}=1-x^{2} \Rightarrow \frac{x^{2}}{1}+\frac{y^{2}}{4}=1$, which represents an ellipse of the second standard form. Hence, the given equation $y=2 \sqrt{1-x^{2}}$ represents the portion of the ellipse lying in the first quadrant. Its rough sketch is shown in fig. 11.16.
The required area $=$ the area of the shaded region

$$
\begin{aligned}
& =\int_{0}^{1} y d x=\int_{0}^{1} 2 \sqrt{1-x^{2}} d x \\
& =2\left[\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x\right]_{0}^{1}=\left[x \sqrt{1-x^{2}}+\sin ^{-1} x\right]_{0}^{1} \\
& =\left(0+\sin ^{-1} 1\right)-\left(0+\sin ^{-1} 0\right)=\frac{\pi}{2} \text { sq. units. }
\end{aligned}
$$

Fig. 11.16.

Example 11. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the ordinates $x=0$ and $x=a e$ where $b^{2}=a^{2}\left(1-e^{2}\right)$ and $0<e<1$.

Solution. The given ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{array}{ll}
\Rightarrow & \frac{y^{2}}{b^{2}}=1-\frac{x^{2}}{a^{2}} \\
\Rightarrow & y= \pm \frac{b}{a} \sqrt{a^{2}-x^{2}}
\end{array}
$$

The required area is shown shaded in fig. 11.17.
Since the area is symmetrical about the x-axis,
required area $=2$ (area of the region bounded by the given
ellipse, x-axis and the lines $x=0$ and $x=a e$)

Fig. 11.17.

$$
=2 \int_{0}^{a e} y d x=2 \int_{0}^{a e} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x
$$

$(\because y \geq 0$ in the first quadrant)

$$
\begin{aligned}
& =2 \frac{b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a e} \\
& =\frac{b}{a}\left[\left(a e \sqrt{a^{2}-a^{2} e^{2}}+a^{2} \sin ^{-1} e\right)-\left(0+\frac{a^{2}}{2} \sin ^{-1} 0\right)\right] \\
& =a b\left(e \sqrt{1-e^{2}}+\sin ^{-1} e\right) .
\end{aligned}
$$

Example 12. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.

Solution. The given curve is $y^{2}=x$ which represents a right hand parabola with vertex $(0,0)$.

The area bounded by the parabola and the line $x=4$ is shown shaded in the fig. 11.18.
This area $=2 \int_{0}^{4} y d x=2 \int_{0}^{4} \sqrt{x} d x$

$$
=2 \cdot\left[\frac{x^{3 / 2}}{\frac{3}{2}}\right]_{0}^{4}=\frac{4}{3}\left(4^{3 / 2}-0\right)=\frac{4}{3}(8-0)=\frac{32}{3} .
$$

Fig. 11.18.

Since the line $x=a$ divides this area into two equal parts, therefore,

$$
\begin{aligned}
& 2 \int_{0}^{a} \sqrt{x} d x=\frac{1}{2} \cdot \frac{32}{3} \Rightarrow \int_{0}^{a} \sqrt{x} d x=\frac{8}{3} \\
\Rightarrow & {\left[\frac{x^{3 / 2}}{\frac{3}{2}}\right]_{0}^{a}=\frac{8}{3} \Rightarrow \frac{2}{3}\left(a^{3 / 2}-0\right)=\frac{8}{3} } \\
\Rightarrow \quad & a^{3 / 2}=4 \Rightarrow a=4^{2 / 3} \\
\Rightarrow \quad & a=\sqrt[3]{16} .
\end{aligned}
$$

Example 13. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$.

Solution. The given ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{y^{2}}{b^{2}}=1-\frac{x^{2}}{a^{2}}$

$$
\Rightarrow \quad y=\frac{b}{a} \sqrt{a^{2}-x^{2}} \quad(\because \text { In first quadrant, } y \geq 0)
$$

The given line is $\frac{x}{a}+\frac{y}{b}=1$

$$
\begin{aligned}
& \Rightarrow \quad \frac{y}{b}=1-\frac{x}{a}=\frac{a-x}{a} \\
& \Rightarrow \quad y=\frac{b}{a}(a-x)
\end{aligned}
$$

Fig. 11.19.

The area of the smaller region bounded by the given ellipse and the given line is shown shaded in the figure.

$$
\begin{align*}
\text { Required area } & =\int_{0}^{a}\left(\frac{b}{a} \sqrt{a^{2}-x^{2}}-\frac{b}{a}(a-x)\right) d x \tag{Article11.1.1}\\
& =\frac{b}{a}\left[\frac{x \sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}-a x+\frac{x^{2}}{2}\right]_{0}^{a}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{b}{a}\left[\left(0+\frac{a^{2}}{2} \sin ^{-1} 1-a^{2}+\frac{a^{2}}{2}\right)-\left(0+\frac{a^{2}}{2} \sin ^{-1} 0-0+0\right)\right] \\
& =\frac{b}{a}\left[\left(\frac{a^{2}}{2} \cdot \frac{\pi}{2}-\frac{a^{2}}{2}\right)-0\right]=\frac{1}{4}(\pi-2) a b \text { sq. units. }
\end{aligned}
$$

Example 14. Find the area of the region included between the curve $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

Solution. The given curve is $4 y=3 x^{2}$
It can be written as $y=\frac{3}{4} x^{2}$, which represents an upward parabola with vertex at $(0,0)$.
The given line is $3 x-2 y+12=0$
$\Rightarrow y=\frac{3 x+12}{2}$
Solving (i) and (ii), we get

$$
\begin{aligned}
& \frac{3 x+12}{2}=\frac{3}{4} x^{2} \\
\Rightarrow & 6 x+24=3 x^{2} \\
\Rightarrow & x^{2}-2 x-8=0 \Rightarrow(x+2)(x-4)=0 \\
\Rightarrow & x=-2, x=4
\end{aligned}
$$

Fig. 11.20.
$\therefore \quad$ The points of intersection are $\mathrm{P}(-2,3)$ and $\mathrm{Q}(4,12)$.
$\therefore \quad$ Required area $=$ area of the shaded region

$$
\begin{aligned}
& =\int_{-2}^{4}\left(\frac{3 x+12}{2}-\frac{3}{4} x^{2}\right) d x \\
& =\left[\frac{3}{2} \cdot \frac{x^{2}}{2}+6 x-\frac{3}{4} \cdot \frac{x^{3}}{3}\right]_{-2}^{4}=\frac{1}{4}\left[3 x^{2}+24 x-x^{3}\right]_{-2}^{4} \\
& =\frac{1}{4}[(48+96-64)-(12-48+8)] \\
& =\frac{1}{4} \cdot 108=27 \text { sq. units. }
\end{aligned}
$$

[Article 11.1.1]

Example 15. Find the area enclosed by the parabola $y^{2}=x$ and the line $y+x=2$.
Solution. The given parabola is $y^{2}=x$
It represents a right hand parabola with vertex at $(0,0)$.

The given line is $y+x=2$
i.e. $\quad x=2-y$

Solving (i) and (ii), we get

$$
\begin{aligned}
& y^{2}=2-y \Rightarrow y^{2}+y-2=0 \\
\Rightarrow & (y-1)(y+2)=0 \Rightarrow y=1,-2
\end{aligned}
$$

When $y=1, x=1$, when $y=-2, x=4$
The points of intersection are $P(1,1)$ and Q (4, - 2).

The required area $=$ area of the shaded region

$$
=\int_{-2}^{1}\left((2-y)-y^{2}\right) d y=\left[2 y-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{-2}^{1}
$$

Fig. 11.21.

$$
\begin{aligned}
& =\left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-2+\frac{8}{3}\right) \\
& =2-\frac{1}{2}-\frac{1}{3}+6-\frac{8}{3}=4 \frac{1}{2} \text { sq. units. }
\end{aligned}
$$

Example 16. Find the area bounded by the curve $y=2 x-x^{2}$ and the line $y=x$.
(I.S.C. 2013)

Solution. The given curve is $y=2 x-x^{2}$
It can be written as $y=-\left(x^{2}-2 x+1\right)+1$ i.e. $(y-1)=-(x-1)^{2}$, which represents a downward parabola with vertex at $(1,1)$.
The given line is $y=x$
Solving (i) and (ii), we get

$$
x=2 x-x^{2} \Rightarrow x^{2}-x=0
$$

$\Rightarrow x=0,1$.
\therefore The points of intersection are $\mathrm{O}(0,0)$ and P (1, 1) .
$\therefore \quad$ Required area $=$ area of the shaded region

$=\int_{0}^{1}\left(\left(2 x-x^{2}\right)-x\right) d x=\int_{0}^{1}\left(x-x^{2}\right) d x$ $=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\left(\frac{1}{2}-\frac{1}{3}\right)-(0-0)=\frac{1}{6}$ sq. units.

Example 17. Find the area enclosed by the curve $y=-x^{2}$ and the line $x+y+2=0$.
Solution. The given curve is $y=-x^{2} \quad \ldots$ (i) It represents a downward parabola with vertex $\mathrm{O}(0,0)$.

The given line is $x+y+2=0$
$\Rightarrow y=-(x+2)$
Solving (i) and (ii), we get

$$
-x^{2}=-(x+2) \Rightarrow x^{2}-x-2=0
$$

$\Rightarrow(x+1)(x-2)=0 \Rightarrow x=-1,2$.
When $x=-1, y=-1$ and when $x=2, y=-4$.
\therefore The points of intersection are $\mathrm{P}(-1,-1)$ and $Q(2,-4)$.

The required area is shown shaded in fig. 11.23. We note that the required area lies below the x-axis, therefore,

$$
\begin{aligned}
\text { required area } & =\left|\int_{-1}^{2}\left(-(x+2)-\left(-x^{2}\right)\right) d x\right| \\
& =\left|\left[-\left(\frac{x^{2}}{2}+2 x\right)+\frac{x^{3}}{3}\right]_{-1}^{2}\right| \\
& =\left|\left(-6+\frac{8}{3}\right)-\left(-\left(\frac{1}{2}-2\right)-\frac{1}{3}\right)\right|=\frac{9}{2} \text { sq. units. }
\end{aligned}
$$

Fig. 11.23.
[Article 11.1.1]

EXERCISE 11.1

1. (i) Find the area bounded by the curve $y=x^{2}$, the x-axis and the ordinates $x=1$ and $x=3$.
(ii) Find the area of the region bounded by $y^{2}=x-2$ and the lines $x=4$ and $x=6$.
(iii) Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.
(iv) Find the area of the region bounded by $x^{2}=y-3$ and the lines $y=4$ and $y=6$.
2. Using integration, find the area of the region bounded between the line $x=2$ and the parabola $y^{2}=8 x$.
3. Using integration, find the area of the region bounded by the line $2 y=-x+8, x$-axis and the lines $x=2$ and $x=4$.
4. Make a rough sketch of the graph of the function $f(x)=9-x^{2}, 0 \leq x \leq 3$ and determine the area enclosed between the curve and the axes.
5. Draw a rough sketch of the curve $y=\sqrt{3 x+4}$ and find the area under the curve, above the x-axis and between $x=0$ and $x=4$.
6. Sketch the rough graph of $y=4 \sqrt{x-1}, 1 \leq x \leq 3$ and compute the area between the curve, x-axis and the line $x=3$.
7. Find the area enclosed between the curve $y=2 x-x^{2}$ and the x-axis.
8. Find the area of the region bounded by the curve $y^{2}=2 y-x$ and the y-axis.
9. Find the area bounded by the curve $y=x^{2}-7 x+6$, the x-axis and the lines $x=2$, $x=6$.
10. Find the area of the region bounded by the curve $x=4 y-y^{2}$ and the y-axis.
(I.S.C. 2012)
11. Sketch the graph of the curve $y=\sqrt{x}+1,0 \leq x \leq 4$ and determine the area of the region enclosed by the curve, x-axis and the lines $x=0$ and $x=4$.
12. Find the area of the region bounded by the parabola $y^{2}=4 a x$ and its latus-rectum.
13. (i) Find the area lying between the curve $y^{2}=4 x$ and the line $y=2 x$.
(ii) Find the area enclosed by the parabola $y^{2}=4 a x$ and the chord $y=m x$.
14. Find the area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$.
15. Sketch the region $\left\{(x, y) ; 4 x^{2}+9 y^{2}=36\right\}$ and find its area, using integration.
16. Make a rough sketch of the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and find
(i) the area under the curve and above the x-axis.
(ii) the area enclosed by the curve.
17. Find the area of the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
18. (i) Find the area of the smaller part enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$.
(ii) Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line

$$
x=\frac{a}{\sqrt{2}}
$$

19. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$ and the curve $x^{2}+y^{2}=16$
20. Find the area of the region enclosed by the curves $y=x^{2}, y=x^{2}-2 x$ and the lines $x=1, x=3$.
21. Draw a rough sketch of the curves $y=\sin x$ and $y=\cos x$ as x varies from 0 to $\frac{\pi}{2}$ and find the area of the region enclosed by them and the x-axis.
22. Find the area enclosed by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$.
23. Find the area bounded by the curve $y=x^{3}$ and the line $y=x$.

ANSWERS

EXERCISE 11.1

1. (i) $\frac{26}{3}$ sq. units
(ii) $\frac{8}{3}(4-\sqrt{2})$ sq. units
(iii) $\frac{8}{3}(4-\sqrt{2})$ sq. units
(iv) $\frac{4}{3}(3 \sqrt{3}-1)$ sq. units.
2. $\frac{32}{3}$ sq. units.
3. 5 sq. units.
4. 18 sq. units.
5. $\frac{112}{9}$ sq. units
6. $\frac{16 \sqrt{2}}{3}$ sq. units.
7. $\frac{4}{3}$ sq. units.
8. $\frac{4}{3}$ sq. units.
9. $\frac{56}{3}$ sq. units.
10. $\frac{32}{3}$ sq. units.
11. $\frac{28}{3}$ sq. units.
12. $\frac{8}{3} a^{2}$ sq. units.
13. (i) $\frac{1}{3}$ sq. units
(ii) $\frac{8 a^{2}}{3 m^{3}}$ sq. units.
14. π sq. units.
15. 6π sq. units.
16. (i) 3π sq. units
(ii) 6π sq. units.
17. $\pi a b$ sq. units.
18. (i) $(\pi-2)$ sq. units
(ii) $\frac{a^{2}}{4}(\pi-2)$ sq. units.
19. 2π sq. units.
20. $\frac{3}{2}(\pi-2)$ sq. units.
21. (i) $\frac{1}{6}$ sq. units.
(ii) $\frac{9}{8}$ sq. units.
22. 18 sq. units.
23. $(\pi-2)$ sq. units
24. $\frac{2}{3} a^{2}$ sq. units.
25. (i) $\frac{16}{3}$ sq. units
(ii) $\frac{16}{3} a^{2}$ sq. units.
26. (i) $\frac{23}{6}$ sq. units
(ii) $\left(\frac{\pi}{4}-\frac{1}{2}\right)$ sq. units (iii) $\frac{1}{3}$ sq. units.
27. $\frac{16}{3}$ sq. units.
28. $\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq. units.
29. $\frac{13}{3}$ sq. units.
30. 4 sq. units.
31. $\frac{\pi}{4}$ sq. units.
32. 4 sq. units.

EXERCISE 11.2

1. 9; it represents the area below the graph, above the x-axis and bounded by the lines $x=-4$ and $x=2$.
2. $\frac{16}{3} a$ sq. units.
3. (i) $\frac{3}{2}$ sq. units
(ii) 6 sq. units.
4. $(8 \pi-\sqrt{3}):(4 \pi+\sqrt{3})$.
5. $15: 49$.
6. $20 \frac{5}{6}$ sq. units; $10 \frac{2}{3}$ sq. units.
7. $\left(\frac{4-\sqrt{2}}{\log 2}-\frac{5}{2} \log 2+\frac{3}{2}\right)$ sq. units.
