VOLUME AND SURFACE AREA

[FOR A REGULAR SHAPED BODY]

32.1 VOLUME AND SURFACE AREA

1. Volume:

Volume of a body is the space occupied by it.

Infact:

1. For a solid body:

Its volume = The volume of the material in the body = Amount of space occupied by the body

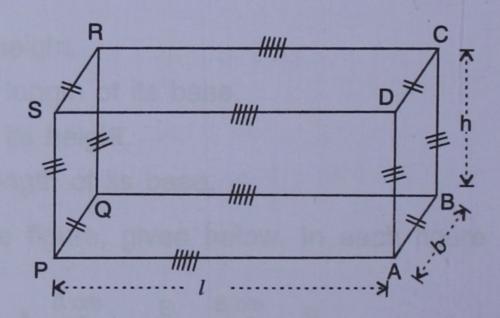
2. For a hollow body:

- (i) Its external volume = Amount of space occupied by the body.
- (ii) Its internal volume = Amount of space inside the body.
- (iii) Volume of material used to make the body

= External volume of the body - Its internal volume

2. Surface area:

Surface area of a body is the sum of the areas of all its faces.


32.2 CUBOID

In everyday life, we come across many objects like, a match box, a brick, etc. Each of these objects is a cuboid in shape.

A body which has six faces, all rectangles, is called a cuboid or a rectangular solid.

As shown in the adjoining flugre:

(i) The cuboid has 12 edges, namely:

AB, BC, CD, DA, PQ, QR, RS, SP, PA, QB, SD and RC such that the opposite edges are equal in length.

$$\Rightarrow$$
 PA = QB = SD = RC = length (l) of the cuboid,
AB = DC = PQ = SR = breadth (b) of the cuboid,
and, AD = BC = PS = QR = height (h) of the cuboid.

(ii) The cuboid has 6 faces, namely:

ABCD, PQRS, ABQP, DCRS, ADSP and BCRQ such that the opposite faces are equal in area.

area of face ABQP = area of face DCRS =
$$l \times b$$
,
area of face ABCD = area of face PQRS = $b \times h$,
and, area of face ADSP = area of face BCRQ = $h \times l$

.. Total surface area of the cuboid

= sum of the areas of its six faces

= area of (ABQP + DCRS + ABCD + PQRS + ADSP + BCRQ)

 $= l \times b + l \times b + b \times h + b \times h + h \times l + h \times l$

 $= 2(l \times b + b \times h + h \times l).$

Volume of the cuboid = Its length \times breadth \times height

 $= l \times b \times h$.

Example 1:

Find the total surface area and the volume of a cuboid, whose :

- (i) length = 25 cm, breadth = 20 cm and height = 12 cm.
- (ii) length = 1.8 m, breadth = 1.2 m and height = 60 cm.

Solution:

(i) Given: l = 25 cm, b = 20 cm and h = 12 cm.

$$\therefore \text{ Total surface area} = 2(l \times b + b \times h + h \times l)$$

$$= 2(25 \times 20 + 20 \times 12 + 12 \times 25) \text{ cm}^2$$

$$= 2080 \text{ cm}^2$$
(Ans.)

And, volume = $l \times b \times h$ = 25 cm × 20 cm × 12 cm = 6000 cm³

(Ans.)

(ii) Given: l = 1.8 m, b = 1.2 m and $h = 60 \text{ cm} = \frac{60}{100} \text{ m} = 0.6 \text{ m}$

:. Total surface area =
$$2(l \times b + b \times h + h \times l)$$

= $2(1.8 \times 1.2 + 1.2 \times 0.6 + 0.6 \times 1.8) \text{ m}^2$
= 7.92 m^2 (Ans.)

And, volume = $1 \times b \times h$ = $1.8 \text{ m} \times 1$

 $= 1.8 \text{ m} \times 1.2 \text{ m} \times 0.6 \text{ m}$

 $= 1.296 \text{ m}^3$ (Ans.)

32.3 CUBE

A cuboid whose length, breadth and height are equal to each other is called a cube.

For a cube: length = breadth = height and each of its six faces is a square.

Since, each face of a cube is a square : area of each face = $(side)^2 = l^2$

: Total surface area of the cube

= Sum of the areas of its six faces
=
$$6 \times (\text{side})^2 = 6 \times l^2$$

Volume of the cube = Its length × breadth × height

$$= l \times l \times l$$
 [:: In a cube, $l = b = h$]

Example 2:

Find the total surface area and the volume of a cube with each side :

(i) 16 cm

(ii) 1.2 m

Solution:

(i) Total surface area of the cube = $6 \times (side)^2$

$$= 6 \times (16)^2 \text{ cm}^2 = 1536 \text{ cm}^2$$
 (Ans.)

And, volume = $(side)^3$

$$= (16)^3 \text{ cm}^3 = 4096 \text{ cm}^3$$
 (Ans.)

(ii) Total surface area of the cube = $6 l^2$

$$= 6 \times (1.2)^2 \text{ m}^2 = 8.64 \text{ m}^2$$
 (Ans.)

And, its volume =
$$l^3 = (1.2)^3 \text{ m}^3 = 1.728 \text{ m}^3$$
 (Ans.)

32.4 AREA OF THE FOUR WALLS OF A ROOM

A room is in the form of a hollow cuboid with 4 walls, each rectangular in shape. The opposite walls being equal in area.

In one pair of opposite walls, the area of each wall = $l \times h$ and in the other pair of opposite walls, the area of each wall = $b \times h$.

.. Total area of 4 walls of a room (including door and windows)

$$= 2 \times l \times h + 2 \times b \times h$$
$$= 2(l + b) \times h$$

Example 3:

- (i) Find the area of the four walls of a room whose dimensions are 8 m, 4.5 m and 3 m. Find the cost of distempering the walls at the rate of ₹ 20 per m².
- (ii) Also, find the cost of white washing its roof at the rate of ₹ 15 per m².

Solution:

Given: Length (l) = 8 m, breadth (b) = 4.5 m and height (h) = 3 m.

(i) Area of four walls =
$$2(l + b) \times h$$

= $2(8 + 4.5) \times 3 \text{ m}^2$
= $2 \times 12.5 \times 3 \text{ m}^2 = 75 \text{ m}^2$ (Ans.)

Cost of distempering 1 m² = ₹20

(ii) Area of the roof =
$$l \times b$$

= $8 \text{ m} \times 4.5 \text{ m} = 36 \text{ m}^2$

Cost of white washing 1 m² = ₹ 15

Example 4:

The volume of a tank, which is cuboid in shape, is 6.4 m 3 . The dimensions of its base are 2 m imes 1.6 m. Find the depth of the tank.

Solution:

Given: Length of the tank, l = 2 m, its breadth, b = 1.6 m and its volume = 6.4 m³.

To find: depth (h) of the tank.

Since, the volume of the tank = $l \times b \times h$

$$\Rightarrow \qquad 6.4 = 2 \times 1.6 \times h$$

$$h = \frac{6.4}{2 \times 1.6} \text{ m} = 2 \text{ m}$$

Example 5:

Bricks of size 20 cm, 10 cm and 8 cm are used to build a wall whose length, breadth and height are 12 m, 30 cm and 3.5 m respectively. How many bricks will be required?

Solution:

And, volume of the wall =
$$12 \text{ m} \times 30 \text{ cm} \times 3.5 \text{ m}$$

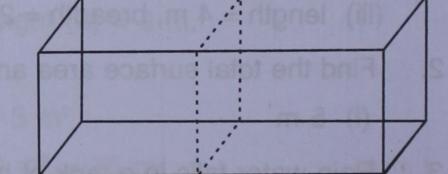
= 1200 cm × 30 cm × 350 cm

= 12600000 cm³

Number of bricks required =
$$\frac{\text{Volume of the wall}}{\text{Volume of each brick}}$$

= 12600000 = 7875

- = 7875 (Ans.)


EXERCISE 32

- 1. Find the total surface area and the volume of a cuboid with :
 - (i) length = 4 m, breadth = 3 m and height = 2 m
 - (ii) length = 30 cm, breadth = 25 cm and height = 10 cm
 - (iii) length = 4 m, breadth = 2 m 40 cm and height = 80 cm.
- 2. Find the total surface area and the volume of a cube whose each edge is :
 - (i) 5 m

(ii) 24 m

- (iii) 1 m 20 cm.
- 3. Rain water falls in a tank of base area 1.5 m \times 0.8 m. Find the height to which it will fill in the tank, if the total volume of water collected in the tank is 2.88 m³.
- 4. Water is to be transferred from one tank to the other tank of dimensions 2.1 m \times 1.5 m \times 0.6 m such that the second tank is completely filled with this water. The length and breadth of the first tank are 2 m and $\frac{1}{2}$ m respectively. Find the height of the water when it was in the first tank.
- 5. How many bricks, each measuring 18 cm × 12 cm × 6 cm, will be needed to build a wall of length = 6 m, width = 24 cm and height = 3.6 m?
- 6. Find the area of four walls of a cube whose one edge is $2\frac{1}{2}$ m.
- Find the area of four walls of a room whose length = 3.2 m, breadth = 2.5 m and height = 3 m.
- Find the total surface area of a box whose length = 25 cm, breadth = 15 cm and height = 10 cm.

- 9. If the total surface area of a cubical box is 216 cm², find the length of its one side. Also, find the area of its four walls.
- 10. If the total surface area of a cube is 96 cm², find the length of its each side and its volume.
- 11. The volume of air in a room is 204 m³. The height of the room is 6 m. What is the floor area of the room?
- 12. The dimensions of a room are 8 m, 6 m and 5 m. Find the cost of :
 - (i) distempering its four walls at the rate of ₹ 30 per m².
 - (ii) white washing its roof at the rate of ₹ 20 per m².
- 13. The dimensions of a room are, length = 4.8 m, breadth = 3.2 m and height = 3 m. The room has a window of size 1 m \times 75 cm and two doors, each of size 1 m \times 2 m. Find :
 - (i) the area of 4 walls of the room, including doors and window.
 - (ii) the area of 4 walls of the room, excluding doors and window.
 - (iii) the cost of distempering the walls of the room at the rate of ₹ 40 per m².
 - (iv) the cost of polishing the doors and window at the rate of ₹ 60 per m².
- 14. A room is 4.8 m long, 3.6 m broad and 2.4 m high. Find the cost of laying tiles on its floor and on its four walls at the rate of ₹ 80 per m².
- 15. The inside of a room has a square base of side 3.6 m. The inside height of the room is 4 m. Find :
 - (i) the space (internal volume) of the room.
 - (ii) how many boxes each of dimensions 0.9 m × 40 cm × 25 cm can be placed in the room.
- 16. The figure, given alongside, shows two identical cubes each of side 12 cm. For the resulting solid, find:

- (i) total surface area.
- (ii) volume.
- 17. A cubical solid of metal has length, breadth and height as 40 cm, 30 cm and 25 cm respectively.
 - (i) Find the volume of the solid cuboid.
 - (ii) If this solid is melted and recasted into solid cubes each of side 5 cm, find the number of cubes formed.
 - (iii) Find the total surface area of all the cubes formed.
- 18. A rectangular tank has length = 5 m and breadth = 3 m. It is filled with water upto 60 cm depth. Find :
 - (i) volume of water in the tank.
 - (ii) area of walls, in the tank, in contact of water.
 - (iii) the wetted surface area of the tank.