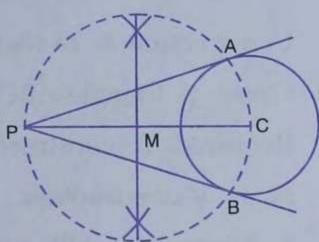
Constructions

17.1 CONSTRUCTION OF TANGENTS

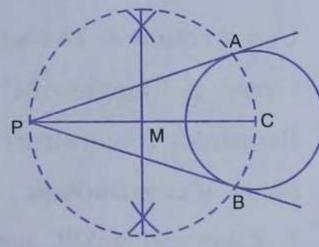

Construction 1. To construct tangents to a given circle from an exterior point.

Given. A circle with centre C and an exterior point P.

Required. To construct tangents from P to the given circle.

Steps of construction.

- 1. Join CP.
- 2. Draw a circle with CP as diameter to cut the given circle at the points A and B (to construct a circle with CP as diameter; draw perpendicular bisector of CP, let M be the mid-point of CP, with M as centre and CM (or PM) as radius, draw a circle).
- 3. Join PA and PB, then PA and PB are the required tangents from the point P to the given circle.


Construction 2. To construct tangents to a given circle from an exterior point when the centre of the circle is not known.

Given. A circle and an exterior point P.

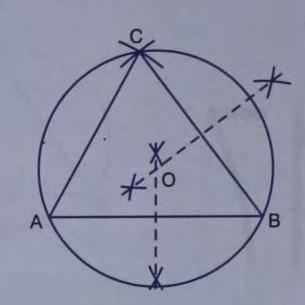
Required. To construct tangents from P to the given circle.

Steps of construction.

- 1. Draw any secant PAB to the circle.
- 2. Draw right bisector of PB. Let M be midpoint of PB.
- 3. Taking M as centre and MP as radius, draw a semicircle.
- 4. At A, draw a perpendicular to PB. Let this perpendicular meet the semicircle at C.
- 5. Taking P as centre and CP as radius, draw an arc to meet the given circle at two points, say Q and R.
- 6. Join PQ and PR. Then PQ and PR are the required tangents from P to the given circle.

M

17.2 CONSTRUCTION OF CIRCUMSCRIBED AND INSCRIBED CIRCLES


Construction 3. To construct the circumscribed circle of a given triangle.

Given. A triangle with sides AB = 4.5 cm, BC = 4 cm and CA = 3.5 cm.

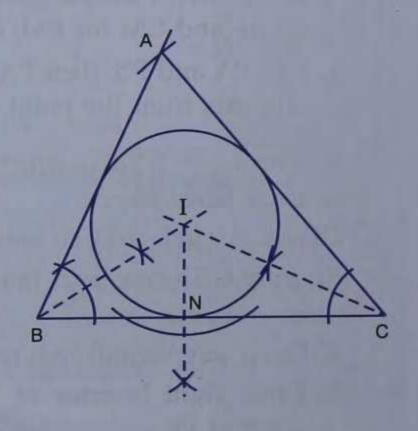
Required. To construct the circumcircle of \triangle ABC.

Steps of construction.

- 1. Construct Δ ABC with the given data.
- 2. Draw the perpendicular bisectors of AB and BC. Let these bisectors meet at the point O.
- 3. With O as centre and radius equal to OA, draw a circle. The circle so drawn passes through the points A, B and C, and is the required circumcircle of Δ ABC.

Remarks

- \square To construct the circumcircle of \triangle ABC, draw the perpendicular bisectors of any two sides of \triangle ABC.
- The perpendicular bisectors of the sides of a triangle are concurrent *i.e.* they meet at a point (the point O of the above construction).
 - The point O is called the circumcentre of the triangle.
- ☐ The circumcentre of the triangle is equidistant from the vertices of the triangle.


Construction 4. To construct the inscribed circle of a given triangle.

Given. A triangle ABC with BC = 6.4 cm, CA = 5.8 cm and \angle B = 60° .

Required. To construct the incircle of Δ ABC.

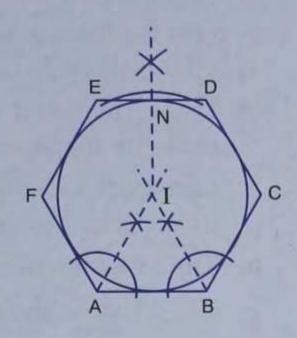
Steps of construction.

- 1. Construct \triangle ABC with the given data.
- 2. Draw the (internal) bisectors of ∠B and ∠C. Let these bisectors meet at the point I.
- 3. From I, draw IN perpendicular to the side BC.
- 4. With I as centre and radius equal to IN, draw a circle. The circle so drawn touches all the sides of the Δ ABC, and is the required incircle of Δ ABC.

Remarks

- To construct the incircle of Δ ABC, draw (internal) bisectors of any two angles of Δ ABC. Let these bisectors meet at I. From I, draw perpendicular to any side.
- ☐ The (internal) bisectors of the angles of a triangle are concurrent *i.e.* they meet at a point (the point I of the above construction).
 - The point I is called the incentre of the triangle.
- ☐ The incentre of the triangle is equidistant from the sides of the triangle.

17.2.1 Construction of circles in and about a regular polygon

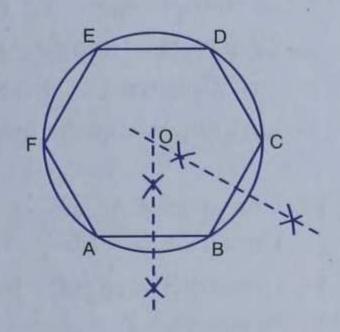

Construction 5. To construct a circle in a given regular hexagon.

Given. A regular hexagon of side 3 cm.

Required. To construct a circle touching the sides of the given regular hexagon.

Steps of construction.

- 1. Construct regular hexagon ABCDEF with side = 3 cm.
- 2. Draw bisectors of ∠A and ∠B. Let these bisectors meet at the point I.
- 3. From I, draw IN perpendicular to ED.
- 4. With I as centre and radius equal to IN, draw a circle. This circle touches all the sides of the hexagon ABCDEF, and is the required circle *in* the regular hexagon.


Construction 6. To construct a circle about a given regular hexagon.

Given. A regular hexagon of side 2.5 cm.

Required. To construct a circle passing through the vertices of the given regular hexagon.

Steps of construction.

- 1. Construct a regular hexagon ABCDEF with side = 2.5 cm.
- 2. Draw the perpendicular bisectors of the sides AB and BC. Let these bisectors meet at the point O.
- 3. With O as centre and radius equal to OA, draw a circle. This circle passes through all the vertices of the regular hexagon ABCDEF, and is the required circle *about* the regular hexagon.

Exercise 17

- 1. Use a ruler and compass only in this question.
 - (i) Draw a circle, centre O and radius 4 cm.
 - (ii) Mark a point P such that OP = 7 cm.

Construct two tangents to the circle from P. Measure and record the length of one of the tangents.

- 2. Draw a circle of radius 3.5 cm. Mark a point P outside the circle at a distance of 6 cm from the centre. Construct two tangents from P to the given circle. Measure and write down the length of one tangent. (2011)
- 3. Draw a line AB = 6 cm. Construct a circle with AB as diameter. Mark a point P at a distance of 5 cm from the mid-point of AB. Construct two tangents from P to the circle with AB as diameter. Measure the length of each tangent.
- 4. Draw an equilateral triangle of side 4 cm. Draw its circumcircle.
- 5. Using a ruler and a pair of compasses only, construct :
 - (i) a triangle ABC, given AB = 4 cm, BC = 6 cm and \angle ABC = 90°.
 - (ii) a circle which passes through the points A, B and C and mark its centre as O. (2008)

- 6. Construct a triangle with sides 3 cm, 4 cm and 5 cm. Draw its circumcircle and measure its radius.
- 7. Using ruler and compasses only:
 - (i) Construct a triangle ABC with the following data: Base AB = 6 cm, AC = 5.2 cm and \angle CAB = 60° .
 - (ii) In the same diagram, draw a circle which passes through the points A, B and C, and mark its centre O.
- 8. Using ruler and compasses only, draw an equilateral triangle of side 5 cm and draw its inscribed circle. Measure the radius of the circle.
- 9. Construct a triangle ABC with BC = 6.4 cm, CA = 5.8 cm and \angle ABC = 60° . Draw its incircle. Measure and record the radius of incircle. (2007)
- 10. The bisectors of angles A and B of a scalene triangle ABC meet at O.
 - (i) What is the point O called?
 - (ii) OR and OQ are drawn perpendicular to AB and CA respectively. What is the relation between OR and OQ?
 - (iii) What is the relation between ∠ACO and ∠BCO?
- 11. Using ruler and compasses only, construct a triangle ABC in which BC = 4 cm, ∠ACB = 45° and the perpendicular from A on BC is 2.5 cm. Draw the circumcircle of triangle ABC and measure its radius.
- 12. Construct a triangle ABC in which base BC = 6 cm, AB = 5.5 cm and $\angle ABC = 120^{\circ}$.
 - (i) Construct a circle circumscribing the triangle ABC.
 - (ii) Draw a cyclic quadrilateral ABCD so that D is equidistant from B and C. (2012)
- 13. Construct a \triangle ABC, given that AB = 4.5 cm, BC = 7 cm and median AD = 4 cm. Construct inscribed circle of \triangle ABC and measure its radius.
- 14. Construct a regular hexagon of side 4 cm. Construct a circle circumscribing the hexagon. (2010)
- 15. Draw a regular hexagon of side 3.5 cm. Construct its circumcircle. Measure and record its radius.
- 16. Draw a regular hexagon of side 4 cm and construct its incircle.

CHAPTER TEST

- 1. Draw a circle of radius 3 cm. Mark its centre as C and mark a point P such that CP = 7 cm. Using ruler and compasses only, construct two tangents from P to the circle.
- 2. Using ruler and compasses only, construct a triangle ABC having given c = 6 cm, b = 7 cm and $\angle A = 30^{\circ}$. Measure side a. Draw the circumcircle of the triangle.
- 3. Using ruler and compasses only, construct an equilateral triangle of height 4 cm and draw its circumcircle.
- 4. Using ruler and compasses only:
 - (i) Construct a triangle ABC with the following data: BC = 7 cm, AB = 5 cm and $\angle ABC = 45^{\circ}$.
 - (ii) Draw the inscribed circle to Δ ABC drawn in part (i).
- 5. Draw a triangle ABC, given that BC = 4 cm, \angle C = 75° and that radius of circumcircle of \triangle ABC is 3 cm.

Hint

Draw perpendicular bisector of BC. With B as centre and radius 3 cm, draw an arc to meet the bisector at O. With O as centre and radius 3 cm, draw a circle. At C, construct \angle BCD = 75° to meet the circle at A. Then ABC is the required triangle.

- 6. Draw a regular hexagon of side 2.8 cm. Construct its circumcircle and measure its radius.
- 7. Draw a line AQ = 7 cm. Mark a point P on AQ such that AP = 4 cm. Using ruler and compasses only, construct :
 - (i) a circle with AP as diameter
 - (ii) two tangents to the above circle from the point Q.
- 8. Construct a triangle ABC with the following data:

AB = 5 cm, BC = 6 cm and $\angle ABC = 90^{\circ}$.

- (i) Find a point P which is equidistant from B and C and is 5 cm from A. How many such points are there?
- (ii) Construct the inscribed circle of \triangle ABC drawn above.