5

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

INTRODUCTION

We know that $x^{2} \geq 0$ for all $x \in \mathbf{R}$ i.e. the square of a real number (whether positive, negative or zero) is non-negative. Hence the equations $x^{2}=-1, x^{2}=-5, x^{2}+7=0$ etc. are not solvable in real number system. Thus, there is a need to extend the real number system to a larger system so that we can have solutions of such equations. In fact, our main objective is to solve the quadratic equation $a x^{2}+b x+c=0$, where $a, b, c \in \mathbf{R}$ and the discriminant $=b^{2}-4 a c<0$, which is not possible in real number system. In this chapter, we shall extend the real number system to a larger system called complex number system so that the solutions of quadratic equations $a x^{2}+b x+c=0$, where a, b, c are real numbers are possible. We shall also solve quadratic equations with complex coefficients.

5.1 COMPLEX NUMBERS

We know that the equation $x^{2}+1=0$ is not solvable in the real number system i.e. it has no real roots. Many mathematicians indicated the square roots of negative numbers, but Euler was the first to introduce the symbol i (read 'iota') to represent $\sqrt{-1}$, and he defined $i^{2}=-1$.

If follows that i is a solution of the equation $x^{2}+1=0$. Also $(-i)^{2}=i^{2}=-1$. Thus the equation $x^{2}+1=0$ has two solutions, $x= \pm i$, where $i=\sqrt{-1}$.

The number i is called an imaginary number. In general, the square roots of all negative real numbers are called imagintary numbers. Thus $\sqrt{-1}, \sqrt{-5}, \sqrt{-\frac{9}{4}}$ etc. are all imaginary numbers.

Complex number

A number of the form $a+i b$, where a and b are real numbers, is called a complex number.
For example, $3+5 i,-2+3 i,-2+i \sqrt{5}, 7+i\left(-\frac{2}{3}\right)$ are all complex numbers.
The system of numbers $\mathbf{C}=\{z ; z=a+i b ; a, b \in \mathbf{R}\}$ is called the set of complex numbers.

Standard form of a complex number

If a complex number is expressed in the form $a+i b$ where $a, b \in R$ and $i=\sqrt{-1}$, then it is said to be in the standard form.

For example, the complex numbers $2+5 i,-3+\sqrt{2} i,-\frac{2}{3}-7 i$ are all in the standard form.
Real and imaginary parts of a complex number
If $z=a+i b(a, b \in \mathbf{R})$ is a complex number, then a is called the real part, denoted by $\operatorname{Re}(z)$ and b is called imaginary part, denoted by $\operatorname{Im}(z)$.

For example :
(i) If $z=2+3 i$, then $\operatorname{Re}(z)=2$ and $\operatorname{Im}(z)=3$.
(ii) If $z=-3+\sqrt{5} i$, then $\operatorname{Re}(z)=-3$ and $\operatorname{Im}(z)=\sqrt{5}$.
(iii) If $z=7$, then $z=7+0 i$, so that $\operatorname{Re}(z)=7$ and $\operatorname{Im}(z)=0$.
(iv) If $z=-5 i$, then $z=0+(-5) i$, so that $\operatorname{Re}(z)=0$ and $\operatorname{Im}(z)=-5$.

Note that imaginary part of a complex number is a real number.
In $z=a+i b(a, b \in \mathbf{R})$, if $b=0$ then $z=a$, which is a real number. If $a=0$ and $b \neq 0$, then $z=i b$, which is called purely imaginary number. If $b \neq 0$, then $z=a+i b$ is non-real complex number. Since every real number a can be written as $a+0 i$, we see that $\mathbf{R} \subset \mathbf{C}$ i.e. the set of real numbers \mathbf{R} is a proper subset of \mathbf{C}, the set of complex numbers.

Note that $\sqrt{3}, 0,2, \pi$ are real numbers; $3+2 i, 3-2 i$ etc. are non-real complex numbers; $2 i,-\sqrt{2} i$ etc. are purely imaginary numbers.

Equality of two complex numbers

Two complex numbers $z_{1}=a+i b$ and $z_{2}=c+i d$ are called equal, written as $z_{1}=z_{2}$, if and only if $a=c$ and $b=d$.

For example, if the complex numbers $z_{1}=a+i b$ and $z_{2}=-3+5 i$ are equal, then $a=-3$ and $b=5$.

5.1.1 Algebra of complex numbers

In this section, we shall define the usual mathematical operations - addition, subtraction, multiplication, division, square, power etc. on complex numbers and will develop the algebra of complex numbers.

Addition of two complex numbers

Let $z_{1}=a+i b$ and $z_{2}=c+i d$ be any two complex numbers, then their sum $z_{1}+z_{2}$ is defined as $z_{1}+z_{2}=(a+c)+i(b+d)$.
For example, let $z_{1}=2+3 i$ and $z_{2}=-5+4 i$, then
$z_{1}+z_{2}=(2+(-5))+(3+4) i=-3+7 i$.

Properties of addition of complex numbers

(i) Closure property

The sum of two complex numbers is a complex number i.e. if z_{1} and z_{2} are any two complex numbers, then $z_{1}+z_{2}$ is always a complex number.
(ii) Addition of complex numbers is commutative

If z_{1} and z_{2} are any two complex numbers, then $z_{1}+z_{2}=z_{2}+z_{1}$.
(iii) Addition of complex numbers is associative

If z_{1}, z_{2} and z_{3} are any three complex numbers, then

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right) .
$$

(iv) The existence of additive identity

Let $z=x+i y, x, y \in \mathbf{R}$, be any complex number, then
$(x+i y)+(0+i 0)=(x+0)+i(y+0)=x+i y$ and
$(0+i 0)+(x+i y)=(0+x)+i(0+y)=x+i y$
$\Rightarrow(x+i y)+(0+i 0)=x+i y=(0+i 0)+(x+i y)$.
Therefore, $0+i 0$ acts as the additive identity. It is simply written as 0 .
Thus, $z+0=z=0+z$ for all complex numbers z.
(v) The existence of additive inverse

For a complex number $z=a+i b$, its negative is defined as

$$
-z=(-a)+i(-b)=-a-i b .
$$

Note that $z+(-z)=(a-a)+i(b-b)=0+i 0=0$.
Thus $-z$ acts as additive inverse of z.

Subtraction of complex numbers

Let $z_{1}=a+i b$ and $z_{2}=c+i d$ be any two complex numbers, then the subtraction of z_{2} from z_{1} is defined as

$$
\begin{aligned}
z_{1}-z_{2} & =z_{1}+\left(-z_{2}\right) \\
& =(a+i b)+(-c-i d) \\
& =(a-c)+i(b-d) .
\end{aligned}
$$

For example, let $z_{1}=2+3 i$ and $z_{2}=-1+4 i$, then

$$
\begin{aligned}
z_{1}-z_{2} & =(2+3 i)-(-1+4 i) \\
& =(2+3 i)+(1-4 i) \\
& =(2+1)+(3-4) i=3-i . \\
z_{2}-z_{1} & =(-1+4 i)-(2+3 i) \\
& =(-1+4 i)+(-2-3 i) \\
& =(-1-2)+(4-3) i=-3+i .
\end{aligned}
$$

and

Multiplication of two complex numbers

Let $z_{1}=a+i b$ and $z_{2}=c+i d$ be any two complex numbers, then their product $z_{1} z_{2}$ is defined as

$$
z_{1} z_{2}=(a c-b d)+i(a d+b c) .
$$

Note that intuitively,
$(a+i b)(c+i d)=a c+i b c+i a d+i^{2} b d$ now put $i^{2}=-1$, thus
$(a+i b)(c+i d)=a c+i(b c+a d)-b d=(a c-b d)+i(a d+b c)$.
For example, let $z_{1}=3+7 i$ and $z_{2}=-2+5 i$, then

$$
\begin{aligned}
z_{1} z_{2} & =(3+7 i)(-2+5 i) \\
& =(3 \times(-2)-7 \times 5)+i(3 \times 5+7 \times(-2)) \\
& =-41+i .
\end{aligned}
$$

Properties of multiplication of complex numbers

(i) Closure property

The product of two complex numbers is a complex number i.e. if z_{1} and z_{2} are any two complex numbers, then $z_{1} z_{2}$ is always a complex number.
(ii) Multiplication of complex numbers is commutative

If z_{1} and z_{2} are any two complex numbers, then $z_{1} z_{2}=z_{2} z_{1}$.
(iii) Multiplication of complex numbers is associative

If z_{1}, z_{2} and z_{3} are any three complex numbers, then $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$.
(iv) The existence of multiplicative identity

Let $z=x+i y, x, y \in \mathbf{R}$, be any complex number, then

$$
\begin{aligned}
(x+i y)(1+i 0) & =(x .1-y \cdot 0)+i(x .0+y \cdot 1)=x+i y \text { and } \\
(1+i 0)(x+i y) & =(1 . x-0 . y)+i(1 . y+0 . x)=x+i y \\
\Rightarrow(x+i y)(1+i 0) & =x+i y=(1+i 0)(x+i y) .
\end{aligned}
$$

Therefore, $1+i 0$ acts as the multiplicative identity. It is simply written as 1 .
Thus $z .1=z=1 . z$ for all complex numbers z.
(v) Existence of multiplicative inverse

For every non-zero complex number $z=a+i b$, we have the complex number

$$
\begin{align*}
& \frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}\left(\text { denoted by } z^{-1} \text { or } \frac{1}{z}\right) \text { such that } \\
& z \cdot \frac{1}{z}=1=\frac{1}{z} \cdot z \tag{checkit}
\end{align*}
$$

$\frac{1}{z}$ is called the multiplicative inverse of z.
Note that intuitively, $\frac{1}{a+i b}=\frac{1}{a+i b} \times \frac{a-i b}{a-i b}=\frac{a-i b}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}$.
(vi) Multiplication of complex numbers is distributive over addition of complex numbers If z_{1}, z_{2} and z_{3} are any three complex numbers, then

$$
\text { and } \quad \begin{aligned}
& z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3} \\
& \left(z_{1}+z_{2}\right) z_{3}=z_{1} z_{3}+z_{2} z_{3} .
\end{aligned}
$$

These results are known as distributive laws.

Division of complex numbers

Division of a complex number $z_{1}=a+i b$ by $z_{2}=c+i d \neq 0$ is defined as
$\frac{z_{1}}{z_{2}}=z_{1} \cdot \frac{1}{z_{2}}=z_{1} \cdot z_{2}^{-1}=(a+i b) \cdot\left(\frac{c}{c^{2}+d^{2}}-i \frac{d}{c^{2}+d^{2}}\right)=\frac{a c+b d}{c^{2}+d^{2}}+i \frac{b c-a d}{c^{2}+d^{2}}$.
Note that intuitively,
$\frac{z_{1}}{z_{2}}=\frac{a+i b}{c+i d}=\frac{a+i b}{c+i d} \times \frac{c-i d}{c-i d}=\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}}$.
For example, if $z_{1}=3+4 i$ and $z_{2}=5-6 i$, then
$\frac{z_{1}}{z_{2}}=\frac{3+4 i}{5-6 i}=\frac{3+4 i}{5-6 i} \times \frac{5+6 i}{5+6 i}=\frac{(3 \times 5-4 \times 6)+(3 \times 6+4 \times 5) i}{5^{2}-6^{2} \times i}$

$$
=\frac{-9+38 i}{25+36}=-\frac{9}{61}+\frac{38}{61} i .
$$

Integral powers of a complex number

If z is any complex number, then positive integral powers of z are defined as
$z^{1}=z, z^{2}=z \cdot z, z^{3}=z^{2} \cdot z, z^{4}=z^{3} \cdot z$ and so on.
If z is any non-zero complex number, then negative integral powers of z are defined as :

$$
z^{-1}=\frac{1}{z^{\prime}}, z^{-2}=\frac{1}{z^{2}}, z^{-3}=\frac{1}{z^{3}} \text { etc. }
$$

If $z \neq 0$, then $z^{0}=1$.

5.1.2 Powers of i

Integral power of i are defined as :

$$
\begin{aligned}
& i^{0}=1, i^{1}=i, i^{2}=-1, \\
& i^{3}=i^{2} \cdot i=(-1) i=-i, \\
& i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1, \\
& i^{5}=i^{4} \cdot i=1 \cdot i=i, \\
& i^{6}=i^{4} \cdot i^{2}=1 \cdot(-1)=-1, \text { and so on. } \\
& i^{-1}=\frac{1}{i}=\frac{1}{i} \times \frac{i}{i}=\frac{i}{-1}=-i
\end{aligned}
$$

Remember that $\frac{1}{i}=-i$
$i^{-2}=\frac{1}{i^{2}}=\frac{1}{-1}=-1$,
$i^{-3}=\frac{1}{i^{3}}=\frac{1}{i^{3}} \times \frac{i}{i}=\frac{i}{i^{4}}=\frac{i}{1}=i$
$i^{-4}=\frac{1}{i^{4}}=\frac{1}{1}=1$, and so on.
Note that $i^{4}=1$ and $i^{-4}=1$. It follows that for any integer k,

$$
i^{4 k}=1, i^{4 k+1}=i, i^{4 k+2}=i^{2}=-1, i^{4 k+3}=i^{3}=-i .
$$

Also, we note that $i^{2}=-1$ and $(-i)^{2}=i^{2}=-1$.
Therefore, i and $-i$ are both square roots of -1 . However, by the symbol $\sqrt{-1}$, we shall mean i only i.e. $\sqrt{-1}=i$.

We observe that i and $-i$ are both the solutions of the equation $x^{2}+1=0$.
Similarly, $(\sqrt{5} i)^{2}=(\sqrt{5})^{2} i^{2}=5(-1)=-5$,
and $(-\sqrt{5} i)^{2}=(-\sqrt{5})^{2} i^{2}=5(-1)=-5$.
Therefore, $\sqrt{5} i$ and $-\sqrt{5} i$ are both square roots of -5 . However, by the symbol $\sqrt{-5}$, we shall mean $\sqrt{5} i$ only i.e. $\sqrt{-5}=\sqrt{5} i$.

In general, if a is any positive real number, then $\sqrt{-a}=\sqrt{a} i$.
We already know that $\sqrt{a} \times \sqrt{b}=\sqrt{a b}$ for all positive real numbers a and b. This result is also true when either $a>0, b<0$ or $a<0, b>0$. But what if $a<0, b<0$? Let us examine :
we note that $i^{2}=i \times i=\sqrt{-1} \sqrt{-1}=\sqrt{(-1)(-1)}$ (by assuming $\sqrt{a} \times \sqrt{b}=\sqrt{a b}$ for all real numbers) $=\sqrt{1}=1$. Thus, we get $i^{2}=1$ which is contrary to the fact that $i^{2}=-1$.

Therefore, $\sqrt{a} \times \sqrt{b}=\sqrt{a b}$ is not true when a and b are both negative real numbers.
Further, if any of a and b is zero, then $\sqrt{a} \times \sqrt{b}=\sqrt{a b}=0$.

5.1.3 Identities

If z_{1} and z_{2} are any two complex numbers, then the following results hold:
(i) $\left(z_{1}+z_{2}\right)^{2}=z_{1}^{2}+2 z_{1} z_{2}+z_{2}^{2}$
(ii) $\left(z_{1}-z_{2}\right)^{2}=z_{1}^{2}-2 z_{1} z_{2}+z_{2}^{2}$
(iii) $\left(z_{1}+z_{2}\right)\left(z_{1}-z_{2}\right)=z_{1}^{2}-z_{2}^{2}$
(iv) $\left(z_{1}+z_{2}\right)^{3}=z_{1}^{3}+3 z_{1}^{2} z_{2}+3 z_{1} z_{2}^{2}+z_{2}^{3}$
(v) $\left(z_{1}-z_{2}\right)^{3}=z_{1}^{3}-3 z_{1}^{2} z_{2}+3 z_{1} z_{2}^{2}-z_{2}^{3}$.

Proof. (i) $\left(z_{1}+z_{2}\right)^{2}=\left(z_{1}+z_{2}\right)\left(z_{1}+z_{2}\right)$

$$
\begin{array}{lr}
=\left(z_{1}+z_{2}\right) z_{1}+\left(z_{1}+z_{2}\right) z_{2} & \text { (Distributive law) } \\
=z_{1}^{2}+z_{2} z_{1}+z_{1} z_{2}+z_{2}^{2} & \text { (Distributive law) } \\
=z_{1}^{2}+z_{1} z_{2}+z_{1} z_{2}+z_{2}^{2} & \text { (Commutative law) } \\
=z_{1}^{2}+2 z_{1} z_{2}+z_{2}^{2} . &
\end{array}
$$

We leave the proofs of the other results for the reader.

5.1.4 Modulus of a complex number

Modulus of a complex number $z=a+i b$, denoted by $\bmod (z)$ or $|z|$, is defined as
$|z|=\sqrt{a^{2}+b^{2}}$, where $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$.
Sometimes, $|z|$ is called absolute value of z. Note that $|z| \geq 0$.
For example :
(i) If $z=-3+5 i$, then $|z|=\sqrt{(-3)^{2}+5^{2}}=\sqrt{34}$.
(ii) If $z=3-\sqrt{7} i$, then $|z|=\sqrt{3^{2}+(-\sqrt{7})^{2}}=\sqrt{9+7}=4$.

Properties of modulus of a complex number
If z, z_{1} and z_{2} are complex numbers, then
(i) $|-z|=|z|$
(ii) $|z|=0$ if and only if $z=0$
(iii) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(iv) $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$, provided $z_{2} \neq 0$.

Proof. (i) Let $z=a+i b$, where $a, b \in \mathbf{R}$, then $-z=-a-i b$.

$$
\therefore \quad|-z|=\sqrt{(-a)^{2}+(-b)^{2}}=\sqrt{a^{2}+b^{2}}=|z| .
$$

(ii) Let $z=a+i b$, then $|z|=\sqrt{a^{2}+b^{2}}$.

Now $|z|=0$ iff $\sqrt{a^{2}+b^{2}}=0$
i.e. iff $a^{2}+b^{2}=0$ i.e. iff $a^{2}=0$ and $b^{2}=0$
i.e. iff $a=0$ and $b=0$ i.e. iff $z=0+i 0$
i.e. iff $z=0$.
(iii) Let $z_{1}=a+i b$, and $z_{2}=c+i d$, then

$$
z_{1} z_{2}=(a c-b d)+i(a d+b c) .
$$

$\therefore\left|z_{1} z_{2}\right|=\sqrt{(a c-b d)^{2}+(a d+b c)^{2}}$
$\sqrt{a^{2} c^{2}+b^{2} d^{2}-2 a b c d+a^{2} d^{2}+b^{2} c^{2}+2 a b c d}$
$\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}$
$=\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}} \quad\left(\because a^{2}+b^{2} \geq 0, c^{2}+d^{2} \geq 0\right)$
$=\left|z_{1}\right|\left|z_{2}\right|$.
(iv) Here $z_{2} \neq 0 \Rightarrow\left|z_{2}\right| \neq 0$.

$$
\text { Let } \frac{z_{1}}{z_{2}}=z_{3} \Rightarrow z_{1}=z_{2} z_{3} \Rightarrow\left|z_{1}\right|=\left|z_{2} z_{3}\right|
$$

$$
\Rightarrow\left|z_{1}\right|=\left|z_{2}\right|\left|z_{3}\right|
$$

(using part (iii))
$\Rightarrow \frac{\left|z_{1}\right|}{\left|z_{2}\right|}=\left|z_{3}\right| \Rightarrow \frac{\left|z_{1}\right|}{\left|z_{2}\right|}\left|\frac{z_{1}}{z_{2}}\right|$

$$
\left(\because z_{3}=\frac{z_{1}}{z_{2}}\right)
$$

REMARK

From (iii), on replacing both z_{1} and z_{2} by z, we get

$$
|z z|=|z||z| \text { i.e. }\left|z^{2}\right|=|z|^{2} .
$$

Similary, $\quad\left|z^{3}\right|=\left|z^{2} z\right|=\left|z^{2}\right||z|=|z|^{2}|z|=|z|^{3}$ etc.

5.1.5 Conjugate of a complex number

Conjugate of a complex number $z=a+i b$, denoted by \bar{z}, is defined as
$\bar{z}=a-i b$ i.e. $\overline{a+i b}=a-i b$.
For example :
(i) $\overline{2+5 i}=2-5 i, \quad \overline{2-5 i}=2+5 i$
(ii) $\overline{-3-7 i}=-3+7 i, \overline{-3+7 i}=-3-7 i$.

Properties of conjugate of a complex number

If z, z_{1} and z_{2} are complex numbers, then
(i) $\overline{(\bar{z})}=z$
(ii) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
(iii) $\overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}}$
(iv) $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$
(v) $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{z_{2}}$, provided $z_{2} \neq 0$
(vi) $|\bar{z}|=|z|$
(vii) $z \bar{z}=|z|^{2}$
(viii) $z^{-1}=\frac{\bar{z}}{|z|^{2}}$, provided $z \neq 0$.

Proof. (i) Let $z=a+i b$, where $a, b \in \mathbf{R}$, so that $\bar{z}=a-i b$.

$$
\therefore \overline{(\bar{z})}=\overline{a-i b}=a+i b=z .
$$

(ii) Let $z_{1}=a+i b$ and $z_{2}=c+i d$, then

$$
\begin{aligned}
\overline{z_{1}+z_{2}} & =\overline{(a+i b)+(c+i d)}=\overline{(a+c)+i(b+d)} \\
& =(a+c)-i(b+d)=(a-i b)+(c-i d)=\overline{z_{1}}+\overline{z_{2}} .
\end{aligned}
$$

(iii) Let $z_{1}=a+i b$ and $z_{2}=c+i d$, then

$$
\begin{aligned}
\overline{z_{1}-z_{2}} & =\overline{(a+i b)-(c+i d)}=\overline{(a-c)+i(b-d)} \\
& =(a-c)-i(b-d)=(a-i b)-(c-i d) \\
& =\overline{z_{1}}-\overline{z_{2}} .
\end{aligned}
$$

(iv) Let $z_{1}=a+i b$ and $z_{2}=c+i d$, then

$$
\begin{aligned}
\overline{z_{1} z_{2}} & =\overline{(a+i b)(c+i d)}=\overline{(a c-b d)+i(a d+b c)} \\
& =(a c-b d)-i(a d+b c) .
\end{aligned}
$$

Also $\overline{z_{1}} \overline{z_{2}}=(a-i b)(c-i d)=(a c-b d)-i(a d+b c)$.
Hence $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$.
(v) Here $z_{2} \neq 0 \Rightarrow \overline{z_{2}} \neq 0$.

Let $\frac{z_{1}}{z_{2}}=z_{3} \Rightarrow z_{1}=z_{2} z_{3} \Rightarrow \overline{z_{1}}=\overline{z_{2} z_{3}}$
$\Rightarrow \overline{z_{1}}=\overline{z_{2}} \overline{z_{3}}$
(using part (iv))
$\Rightarrow \frac{\overline{z_{1}}}{\bar{z}_{2}}=\overline{z_{3}} \Rightarrow \frac{\overline{z_{1}}}{z_{2}}=\overline{\left(\frac{z_{1}}{z_{2}}\right)}$

$$
\left(\because z_{3}=\frac{z_{1}}{z_{2}}\right)
$$

(vi) Let $z=a+i b$, then $\bar{z}=a-i b$.
$\therefore|\bar{z}|=\sqrt{a^{2}+(-b)^{2}}=\sqrt{a^{2}+b^{2}}=|z|$.
(vii) Let $z=a+i b$, then $\bar{z}=a-i b$.

$$
\begin{aligned}
\therefore z \bar{z} & =(a+i b)(a-i b) \\
& =(a a-b(-b))+i(a(-b)+b a) \\
& =\left(a^{2}+b^{2}\right)+i .0 \\
& =a^{2}+b^{2}=\left(\sqrt{a^{2}+b^{2}}\right)^{2}=|z|^{2} .
\end{aligned}
$$

Remember that $(a+i b)(a-i b)=a^{2}+b^{2}$.
(viii) Let $z=a+i b \neq 0$, then $|z| \neq 0$.

$$
\begin{aligned}
& \therefore z \bar{z}=(a+i b)(a-i b)=a^{2}+b^{2}=|z|^{2} \\
& \Rightarrow \frac{z \bar{z}}{|z|^{2}}=1 \Rightarrow \frac{\bar{z}}{|z|^{2}}=\frac{1}{z}=z^{-1}
\end{aligned}
$$

$$
\text { Thus, } z^{-1}=\frac{\bar{z}}{|z|^{2}}, \text { provided } z \neq 0
$$

REMARK

From (iv), on replacing both z_{1} and z_{2} by z, we get
$\overline{z z}=\bar{z} \bar{z}$ i.e. $\overline{z^{2}}=(\bar{z})^{2}$.
Similarly, $\left(\overline{z^{3}}\right)=\left(\overline{z^{2} z}\right)=\left(\overline{z^{2}}\right) \bar{z}=(\bar{z})^{2} \bar{z}=(\bar{z})^{3}$ etc.

NOTE

The order relations 'greater than' and 'less than' are not defined for complex numbers i.e. the inequalities $2+3 i>-2+5 i, 4 i \geq 1-2 i,-1+3 i<5$ etc. are meaningless.

ILLUSTRATIVE EXAMPLES

Example 1. A student says
$1=\sqrt{1}=\sqrt{(-1)(-1)}=\sqrt{-1} \sqrt{-1}=i . i=i^{2}=-1$. Thus $1=-1$.
Where is the fault?
Solution. $1=\sqrt{1}=\sqrt{(-1)(-1)}$ is true, but $\sqrt{(-1)(-1)}=\sqrt{-1} \sqrt{-1}$ is wrong.
Because if both a, b are negative real numbers, then $\sqrt{a} \sqrt{b}=\sqrt{a b}$ is not true.
Example 2. If $z=\sqrt{37}+\sqrt{-19}$, find $\operatorname{Re}(z), \operatorname{Im}(z), \bar{z}$ and $|z|$.
Solution. Given $z=\sqrt{37}+\sqrt{-19}=\sqrt{37}+i \sqrt{19}$.

$$
\begin{aligned}
\therefore \quad \operatorname{Re}(z) & =\sqrt{37} \text { and } \operatorname{Im}(z)=\sqrt{19} . \\
\bar{z} & =\overline{\sqrt{37}+i \sqrt{19}}=\sqrt{37}-i \sqrt{19} . \\
|z| & =\sqrt{(\sqrt{37})^{2}+(\sqrt{19})^{2}}=\sqrt{37+19}=\sqrt{56}=2 \sqrt{14} .
\end{aligned}
$$

Example 3. If $4 x+i(3 x-y)=3-6 i$ and x, y are real numbers, then find the values of x and y. (NCERT)

Solution. Given $4 x+i(3 x-y)=3-6 i$
$\Rightarrow \quad 4 x+i(3 x-y)=3+i(-6)$.

Equating real and imaginary parts on both sides, we get

$$
\begin{aligned}
& 4 x=3 \text { and } 3 x-y=-6 \\
\Rightarrow & x=\frac{3}{4} \text { and } 3 \times \frac{3}{4}-y=-6 \\
\Rightarrow & x=\frac{3}{4} \text { and } y=6+\frac{9}{4}=\frac{33}{4} .
\end{aligned}
$$

Hence $x=\frac{3}{4}$ and $y=\frac{33}{4}$.
Example 4. For what real values of x and y are the following numbers equal
(i) $(1+i) y^{2}+(6+i)$ and $(2+i) x$
(ii) $x^{2}-7 x+9 y i$ and $y^{2} i+20 i-12$?

Solution. (i) Given $(1+i) y^{2}+(6+i)=(2+i) x$
$\Rightarrow \quad\left(y^{2}+6\right)+i\left(y^{2}+1\right)=2 x+i x$
$\Rightarrow y^{2}+6=2 x$ and $y^{2}+1=x$
$\Rightarrow \quad x=5$ and $y^{2}=4 \Rightarrow x=5$ and $y= \pm 2$.
Hence, the required values of x and y are

$$
x=5, y=2 ; x=5, y=-2 \text {. }
$$

(ii) Given $x^{2}-7 x+9 y i=y^{2} i+20 i-12$
$\Rightarrow \quad\left(x^{2}-7 x\right)+i(9 y)=(-12)+i\left(y^{2}+20\right)$
$\Rightarrow \quad x^{2}-7 x=-12$ and $9 y=y^{2}+20$
$\Rightarrow \quad x^{2}-7 x+12=0$ and $y^{2}-9 y+20=0$
$\Rightarrow(x-4)(x-3)=0$ and $(y-5)(y-4)=0$
$\Rightarrow \quad x=4,3$ and $y=5,4$.
Hence, the required values of x and y are

$$
x=4, y=5 ; x=4, y=4 ; x=3, y=5 ; x=3, y=4 \text {. }
$$

Example 5. Express each of the following in the standard form $a+i b$:
(i) $\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)-\left(-\frac{4}{3}+i\right)$
(ii) $3(7+i 7)+i(7+i 7)$
(NCERT)
(NCERT)

$$
\text { (iii) }(-2+\sqrt{-3})(-3+2 \sqrt{-3}) \quad \text { (iv) } \frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})} \text {. }
$$

(NCERT)
Solution. (i) $\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)-\left(-\frac{4}{3}+i\right)$

$$
\begin{aligned}
& =\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)+\left(\frac{4}{3}-i\right) \\
& =\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)=\frac{17}{3}+\frac{5}{3} i .
\end{aligned}
$$

(ii) $3(7+i 7)+i(7+i 7)=(21+21 i)+\left(7 i+7 i^{2}\right)$
$=21+21 i+7 i+7(-1)=(21-7)+(21+7) i$
$=14+28 i$.
(iii) $(-2+\sqrt{-3})(-3+2 \sqrt{-3})=(-2+\sqrt{3} i)(-3+2 \sqrt{3} i)$

$$
\begin{aligned}
& =(6-2 \sqrt{3} \sqrt{3})+(-3 \sqrt{3}-4 \sqrt{3}) i \\
& =0-7 \sqrt{3} i .
\end{aligned}
$$

$$
\text { (iv) } \begin{aligned}
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})} & =\frac{(3)^{2}+(\sqrt{5})^{2}}{\sqrt{2} i+\sqrt{2} i} & \left((a+i b)(a-i b)=a^{2}+b^{2}\right) \\
& =\frac{9+5}{2 \sqrt{2} i}=\frac{14}{2 \sqrt{2}} \cdot \frac{1}{i}=\frac{7}{\sqrt{2}}(-i) & \left(\because \frac{1}{i}=-i\right) \\
& =0-\frac{7}{\sqrt{2}} i . &
\end{aligned}
$$

Example 6. Express the following in the form $a+i b$:
(i) $(-i)(2 i)\left(-\frac{1}{8} i\right)^{3}$ (NCERT)
(ii) ${ }^{102}$
(iii) i^{-39}
(NCERT)
(iv) $(-\sqrt{-1})^{31}$
(v) $i^{9}+i^{19}$ (NCERT)
(vi) $i^{35}+\frac{1}{i^{35}}$.

Solution. (i) $(-i)(2 i)\left(-\frac{1}{8} i\right)^{3}=(-1)^{4} \times 2 \times\left(\frac{1}{8}\right)^{3} \times i^{5}$

$$
\begin{aligned}
& =1 \times 2 \times \frac{1}{512} \times i^{4} \times i \\
& =\frac{1}{256} \times 1 \times i=0+\frac{1}{256} i .
\end{aligned}
$$

(ii) $i^{102}=i^{4 \times 25+2}=i^{2}$

$$
\left(\because i^{4 k+2}=i^{2}, k \in \mathbf{I}\right)
$$

$$
=-1=-1+i 0 .
$$

(iii) $i^{-39}=i^{4 \times(-10)+1}=i$

$$
\left(\because i^{4 k+1}=i, k \in \mathbf{I}\right)
$$

$$
=0+i .
$$

(iv) $(-\sqrt{-1})^{31}=(-i)^{31}=(-1)^{31} i^{31}$

$$
\begin{aligned}
& =-i^{4 \times 7+3}=-i^{3} \\
& =-i^{2} \cdot i=-(-1) i=i=0+i .
\end{aligned} \quad\left(\because i^{4 k+3}=i^{3}, k \in \mathbf{I}\right)
$$

(v) $i^{9}+i^{19}=i^{2 \times 4+1}+i^{4 \times 4+3}=i+i^{3}$

$$
=i+i^{2}-i=i+(-1) i=0=0+i 0 .
$$

(vi) $i^{35}+\frac{1}{i^{35}}=i^{35}+i^{-35}=i^{4 \times 8+3}+i^{4 \times(-9)+1}$

$$
\begin{aligned}
& =i^{3}+1=i^{2} i+i=(-1) i+i \\
& =0=0+i 0 .
\end{aligned}
$$

Example 7. Express each of the following in the standard form $a+i b$:
(i) $(1-i)^{4}$
(NCERT)
(ii) $\left(-2-\frac{1}{3} i\right)^{3}$
(iii) $\left(2 i-i^{2}\right)^{2}+(1-3 i)^{3}$
(iv) $\left(i^{18}+\left(\frac{1}{i}\right)^{25}\right)^{3}$
(NCERT)
(NCERT)
(v) $(1+i)^{6}+(1-i)^{3}$

Solution. (i) $(1-i)^{4}=\left((1-i)^{2}\right)^{2}=\left(1+i^{2}-2 i\right)^{2}$

$$
\begin{aligned}
& =(1+(-1)-2 i)^{2}=(-2 i)^{2}=4 i^{2} \\
& =4(-1)=-4=-4+i 0 .
\end{aligned}
$$

(ii) $\left(-2-\frac{1}{3} i\right)^{3}=(-1)^{3}\left(2+\frac{1}{3} i\right)^{3}$

$$
\begin{aligned}
& =-\left[2^{3}+3 \times 2^{2} \times \frac{1}{3} i+3 \times 2 \times\left(\frac{1}{3} i\right)^{2}+\left(\frac{1}{3} i\right)^{3}\right] \\
& =-\left[8+4 i+\frac{2}{3} i^{2}+\frac{1}{27} i^{3}\right] \\
& =-\left[8+4 i+\frac{2}{3}(-1)+\frac{1}{27}(-i)\right] \\
& =-\left[\frac{22}{3}+\frac{107}{27} i\right]=-\frac{22}{3}-\frac{107}{27} i .
\end{aligned}
$$

(iii) $\left(2 i-i^{2}\right)^{2}+(1-3 i)^{3}=(2 i+1)^{2}+(1-3 i)^{3}$

$$
\begin{aligned}
& =\left(4 i^{2}+4 i+1\right)+\left(1-9 i+27 i^{2}-27 i^{3}\right) \\
& =-4+4 i+1+1-9 i-27+27 i=-29+22 i .
\end{aligned}
$$

(iv) $\left(i^{18}+\left(\frac{1}{i}\right)^{25}\right)^{3}=\left(i^{4 \times 4+2}+(-i)^{25}\right)^{3}$

$$
=\left(i^{2}+(-1)^{25} i^{25}\right)^{3}=\left(-1-i^{4 \times 6+1}\right)^{3}
$$

$$
=(-1-i)^{3}=(-1)^{3}(1+i)^{3}
$$

$$
=-\left[1+3 i+3 i^{2}+i^{3}\right]
$$

$$
=-[1+3 i-3-i]=-(-2+2 i)
$$

$$
=2-2 i .
$$

(v) $\quad(1+i)^{6}=\left((1+i)^{2}\right)^{3}=\left(1+i^{2}+2 i\right)^{3}=(1-1+2 i)^{3}=(2 i)^{3}$

$$
=8 i^{3}=8(-i)=-8 i
$$

and $\quad(1-i)^{3}=1-i^{3}-3 i+3 i^{2}=1-(-i)-3 i+3(-1)$

$$
=-2-2 i
$$

$\therefore(1+i)^{6}+(1-i)^{3}=-8 i+(-2-2 i)=-2-10 i$.
Example 8. Find the multiplicative inverse of $\sqrt{5}+3 i$.
(NCERT)

Solution. Let $z=\sqrt{5}+3 i$,

then $\bar{z}=\sqrt{5}-3 i$ and $|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$.
We know that the multiplicative inverse of z is given by

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-\frac{3}{14} i .
$$

Alternatively

$$
\begin{aligned}
z^{-1} & =\frac{1}{z}=\frac{1}{\sqrt{5}+3 i}=\frac{1}{\sqrt{5}+3 i} \times \frac{\sqrt{5}-3 i}{\sqrt{5}-3 i} \\
& =\frac{\sqrt{5}-3 i}{(\sqrt{5})^{2}-(3 i)^{2}}=\frac{\sqrt{5}-3 i}{5-9(-1)}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-\frac{3}{14} i .
\end{aligned}
$$

Example 9. Express the following in the form $a+i b$:
(i) $\frac{i}{1+i}$
(ii) $\frac{5+\sqrt{2} i}{1-\sqrt{2} i}$
(iii) $\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)($ NCERT $)$
(iv) $\frac{(1+i)(3+i)}{3-i}-\frac{(1-i)(3-i)}{3+i}$.
(NCERT)

Solution. (i) $\frac{i}{1+i}=\frac{i}{1+i} \times \frac{1-i}{1-i}=\frac{i-i^{2}}{1-i^{2}}=\frac{i-(-1)}{1-(-1)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2} i$.
(ii) $\frac{5+\sqrt{2} i}{1-\sqrt{2} i}=\frac{5+\sqrt{2} i}{1-\sqrt{2} i} \times \frac{1+\sqrt{2} i}{1+\sqrt{2} i}=\frac{5+5 \sqrt{2} i+\sqrt{2} i+2 i^{2}}{1^{2}-(\sqrt{2} i)^{2}}$

$$
=\frac{5+6 \sqrt{2} i-2}{1-2(-1)}=\frac{3+6 \sqrt{2} i}{3}=1+2 \sqrt{2} i .
$$

(iii) $\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)=\frac{1+i-2+8 i}{(1-4 i)(1+i)} \times \frac{3-4 i}{5+i}$

$$
\begin{aligned}
& =\frac{-1+9 i}{1+i-4 i+4} \times \frac{3-4 i}{5+i}=\frac{(-1+9 i)(3-4 i)}{(5-3 i)(5+i)} \\
& =\frac{-3+4 i+27 i+36}{25+5 i-15 i+3}=\frac{33+31 i}{28-10 i} \\
& =\frac{33+31 i}{28-10 i} \times \frac{28+10 i}{28+10 i}=\frac{33 \times 28+330 i+31 \times 28 i-310}{(28)^{2}-(10 i)^{2}} \\
& =\frac{924-310+(330+868) i}{784-100(-1)}=\frac{614+1198 i}{884}=\frac{307}{442}+\frac{599}{442} i .
\end{aligned}
$$

(iv) $\frac{(1+i)(3+i)}{3-i}-\frac{(1-i)(3-i)}{3+i}=\frac{(1+i)(3+i)(3+i)-(1-i)(3-i)(3-i)}{(3-i)(3+i)}$

$$
\begin{aligned}
& =\frac{(1+i)(8+6 i)-(1-i)(8-6 i)}{9-i^{2}} \\
& =\frac{(2+14 i)-(2-14 i)}{9+1}=\frac{28 i}{10}=0+\frac{14}{5} i .
\end{aligned}
$$

Example 10. (i) If $\frac{(1+i)^{2}}{2-i}=x+$ iy, then find the value of $x+y$. (NCERT Examplar Problems)
(ii) If $\left(\frac{1+i}{1-i}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}=x+i y$, then find $(x, y) . \quad$ (NCERT Examplar Problems)
(iii) If $\left(\frac{1-i}{1+i}\right)^{100}=a+i b$, then find (a, b). \quad (NCERT Examplar Problems)

Solution. (i) $x+i y=\frac{(1+i)^{2}}{2-i}=\frac{1+i^{2}+2 i}{2-i}=\frac{1-1+2 i}{2-i}=\frac{2 i}{2-i}$

$$
\begin{aligned}
& =\frac{2 i}{2-i} \times \frac{2+i}{2+i}=\frac{4 i+2 i^{2}}{2^{2}-i^{2}}=\frac{4 i+2(-1)}{4-(-1)} \\
& =\frac{-2+4 i}{5}=-\frac{2}{5}+\frac{4}{5} i . \\
\Rightarrow x= & -\frac{2}{5} \text { and } y=\frac{4}{5} . \\
\therefore x+y & =-\frac{2}{5}+\frac{4}{5}=\frac{2}{5} .
\end{aligned}
$$

(ii) We have, $\frac{1+i}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}=\frac{(1+i)^{2}}{1^{2}-i^{2}}$

$$
=\frac{1+i^{2}+2 i}{1-(-1)}=\frac{1-1+2 i}{2}=\frac{2 i}{2}=i
$$

$$
\therefore \quad \frac{1-i}{1+i}=\frac{1}{i}=-i
$$

$$
\left(\because \frac{1}{i}=-i\right)
$$

Given $x+i y=\left(\frac{1+i}{1-i}\right)^{3}-\left(\frac{1-i}{1+i}\right)^{3}=i^{3}-(-i)^{3}=i^{3}+i^{3}$

$$
=2 i^{3}=2(-i)=0-2 i
$$

$\Rightarrow \quad x=0$ and $y=-2$.
Hence, the orders pair (x, y) is $(0,-2)$.
(iii) Given $a+i b=\left(\frac{1-i}{1+i}\right)^{100}=(-i)^{100}$
(see part (ii))

$$
=(-1)^{100}(i)^{4 \times 25}=1 \times 1=1=1+0 i
$$

$\Rightarrow \quad a=1$ and $b=0$.
Hence, the ordered pair (a, b) is $(1,0)$.
Example 11. (i) If $(1+i) z=(1-i) \bar{z}$, then show that $z=-i \bar{z} . \quad$ (NCERT Examplar Problems)
(ii) If $z_{1}=2-i$ and $z_{2}=-2+i$, find $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$.
(NCERT)

Solution. (i) Given $(1+i) z=(1-i) \bar{z}$

$$
\therefore \quad \operatorname{Re}\left(\frac{z_{1} z_{2}}{z_{1}}\right)=-\frac{2}{5}
$$

Example 12. (i) Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$
(NCERT)
(ii) Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
(NCERT)
(iii) Find the modulus of $\frac{(2-3 i)^{2}}{-1+5 i}$

Solution. (i) Let $z=\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}=\frac{6+9 i-4 i+6}{2-i+4 i+2}$

$$
\begin{aligned}
& =\frac{12+5 i}{4+3 i}=\frac{12+5 i}{4+3 i} \times \frac{4-3 i}{4-3 i}=\frac{48-36 i+20 i+15}{4^{2}-(3 i)^{2}} \\
& =\frac{63-16 i}{16-9(-1)}=\frac{63-16 i}{25}=\frac{63}{25}-\frac{16}{25} i .
\end{aligned}
$$

\therefore Conjugate of $z=\frac{63}{25}+\frac{16}{25} i$.

$$
\begin{aligned}
& \Rightarrow \quad \frac{z}{\bar{z}}=\frac{1-i}{1+i}=\frac{1-i}{1+i} \times \frac{1-i}{1-i}=\frac{(1-i)^{2}}{1^{2}-i^{2}}=\frac{1+i^{2}-2 i}{1-(-1)} \\
& \Rightarrow \quad \frac{z}{\bar{z}}=\frac{1-1-2 i}{2}=-\frac{2 i}{2}=-i \\
& \Rightarrow \quad z=-i \bar{z} . \\
& \text { (ii) } \\
& \frac{z_{1} z_{2}}{\bar{z}_{1}}=\frac{(2-i)(-2+i)}{\overline{2-i}}=\frac{-4+2 i+2 j-i^{2}}{2+i}=\frac{-4+4 i-(-1)}{2+i} \\
& =\frac{-3+4 i}{2+i}=\frac{-3-4 i}{2+i} \times \frac{2-i}{2-i} \\
& =\frac{-6+3 i+8 i-4 i^{2}}{2^{2}-i^{2}}=\frac{-6+11 i-4(-1)}{4-(-1)} \\
& =\frac{-2+11 i}{5}=-\frac{2}{5}+\frac{11}{5} i .
\end{aligned}
$$

Example 32. If α and β are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$.
(NCERT)
Solution. We have $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{(\beta-\alpha) \bar{\beta}}{(1-\bar{\alpha} \beta) \bar{\beta}}\right|$
(Note this step)

$$
\begin{aligned}
& =\left|\frac{(\beta-\alpha) \bar{\beta}}{\bar{\beta}-\bar{\alpha} \beta \bar{\beta}}\right|=\left|\frac{(\beta-\alpha) \bar{\beta}}{\bar{\beta}-\bar{\alpha}}\right| \\
& =\frac{|(\beta-\alpha) \bar{\beta}|}{|\bar{\beta}-\bar{\alpha}|} \\
& =\frac{|\beta-\alpha||\bar{\beta}|}{|\overline{\beta-\alpha}|} \\
& =\frac{|\beta-\alpha||\beta|}{|\beta-\alpha|} \\
& =|\beta|=1
\end{aligned}
$$

(Given $\left.|\beta|=1 \Rightarrow|\beta|^{2}=1 \Rightarrow \beta \bar{\beta}=1\right)$
$\left(\because\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\right)$

$$
\left(\because \overline{z_{1}}-\overline{z_{2}}=\overline{z_{1}-z_{2}}\right)
$$

$\left(\because \overline{z_{1}}-\overline{z_{2}}=\overline{z_{1}-z_{2}}\right)$

$$
(\because|\bar{z}|=|z|)
$$

$(\because|\bar{z}|=|z|)$
($|\beta|=1$, given $)$

Hence, $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1$.
Example 33. If $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$, prove that

$$
\left|z_{1}+z_{2}+\ldots+z_{n}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right| .
$$

(NCERT Examplar Problems)

Solution. Given $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$

$$
\begin{aligned}
& \Rightarrow \quad\left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}=\ldots=\left|z_{n}\right|^{2}=1 \\
& \Rightarrow \quad z_{1} \overline{z_{1}}=1, z_{2} \overline{z_{2}}=1, \ldots, z_{n} \overline{z_{n}}=1 \\
& \Rightarrow \quad \frac{1}{z_{1}}=\overline{z_{1}}, \frac{1}{z_{2}}=\overline{z_{2}}, \ldots, \frac{1}{z_{n}}=\overline{z_{n}} . \\
& \therefore \quad\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots+\frac{1}{z_{n}}\right|=\left|\overline{z_{1}}+\overline{z_{2}}+\ldots+\overline{z_{n}}\right| \\
& =\left|\overline{z_{1}+z_{2}+\ldots+z_{n}}\right|=\left|z_{1}+z_{2}+\ldots+z_{n}\right| .
\end{aligned}
$$

EXERCISE 5.1

Very short answer type questions (1 to 31) :

1. Evaluate the following :
(i) $\sqrt{-9} \times \sqrt{-4}$
(ii) $\sqrt{(-9)(-4)}$
(iii) $\sqrt{-25} \times \sqrt{16}$
(iv) $3 \sqrt{-16} \sqrt{-25}$
(v) $\sqrt{-16}+3 \sqrt{-25}+\sqrt{-36}-\sqrt{-625}$.
2. If $z=-3-i$, find $\operatorname{Re}(z), \operatorname{Im}(z), \bar{z}$ and $|z|$.
3. If $z^{2}=-i$, then is it true that $z= \pm \frac{1}{\sqrt{2}}(1-i)$?
4. If $z^{2}=-3+4 i$, then is it true that $z= \pm(1+2 i)$?
5. If $i=\sqrt{-1}$, then show that $(x+1+i)(x+1-i)=x^{2}+2 x+2$.
6. Find real values of x and y if
(i) $2 y+(3 x-y) i=5-2 i$
(ii) $(3 x-1)+(\sqrt{3}+2 y) i=5$
(iii) $(3 y-2)+i(7-2 x)=0$.
7. If $x, y \in \mathbf{R}$ and $(5 y-2)+i(3 x-y)=3-7 i$, find the values of x and y.
8. If x, y are reals and $(3 y+2)+i(x+3 y)=0$, find the values of x and y.
9. If x, y are reals and $(1-i) x+(1+i) y=1-3 i$, find the values of x and y.
10. For any two complex numbers z_{1} and z_{2}, prove that

$$
\begin{equation*}
\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re}\left(z_{1}\right) \operatorname{Re}\left(z_{2}\right)-\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right) . \tag{NCERT}
\end{equation*}
$$

11. For any complex number z, prove that

$$
\operatorname{Re}(z)=\frac{z+\bar{z}}{2} \text { and } \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i} .
$$

12. If z is a complex number, show that $\frac{z-\bar{z}}{2 i}$ is real.

Express the following (13 to 20) complex numbers in the standard form $a+i b$:
13. (i) $(-5 i)\left(\frac{1}{8} i\right)$
(NCERT)
(ii) $(5 i)\left(-\frac{3}{5} i\right)$.
(NCERT)
14. (i) $(1-i)-(-1+6 i)$
(NCERT)
(ii) $\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$.
(NCERT)
15. (i) $(-2+3 i)+3\left(-\frac{1}{2} i+1\right)-(2 i)$
(ii) $(7+i 5)(7-i 5)$.
16. (i) $(-\sqrt{3}+\sqrt{-2})(2 \sqrt{3}-i)$ (NCERT)
(ii) $(-5+3 i)^{2}$.
17.
(i) $\left(\frac{1}{2}+2 i\right)^{3}$
(ii) $(5-3 i)^{3}$.
(NCERT)
18. (i) $\left(\frac{1}{3}+3 i\right)^{3}$
(NCERT)
(ii) $(\sqrt{5}+7 i)(\sqrt{5}-7 i)^{2}$.
19. (i) i^{99}
(ii) i^{-35}.
20. (i) $(-\sqrt{-4})^{3}$
(ii) $i+i^{2}+i^{3}+i^{4}$.
21. Find the value of $(-1+\sqrt{-3})^{2}+(-1-\sqrt{-3})^{2}$.
22. If n is any integer, then find the value of
(i) $(-\sqrt{-1})^{4 n+3}$
(ii) $\frac{i^{4 n+1}-i^{4 n-1}}{2}$.
(NCERT Examplar Problems)
23. Find the multiplicative inverse of $-i$.
(NCERT)
24. Express the following numbers in the form $a+i b, a, b \in \mathbf{R}$:
(i) $\frac{i}{1+i}$
(ii) $\frac{1-i}{1+i}$.
25. If $(a+i b)(c+i d)=\mathrm{A}+i \mathrm{~B}$, then show that $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=\mathrm{A}^{2}+\mathrm{B}^{2}$.
26. Find the modulus of the following complex numbers :
(i) $(3-4 i)(-5+12 i)$
(ii) $\frac{5-12 i}{-3+4 i}$.
27. Find the modulus of the following :
(i) $\frac{(2-3 i)^{2}}{4+3 i}$
(ii) $(\sqrt{7}-3 i)^{3}$.
28. (i) If $z=3-\sqrt{7} i$, then find $\left|z^{-1}\right|$.
(ii) If $z=x+i y, x, y \in \mathbf{R}$, then find $|i z|$.
29. Find the conjugate of i^{7}.
30. Write the conjugate of $(2+3 i)(1-2 i)$ in the form $a+i b, a, b \in \mathbf{R}$.
31. Solve for x : $|1+i|^{x}=2$.

Express the following (32 and 33) complex numbers in the standard form $a+i b$:
32.
(i) $i^{55}+i^{60}+i^{65}+i^{70}$
(ii) $\frac{i+i^{2}+i^{4}}{1+i^{2}+i^{4}}$.
44. If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, then prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$.
45. If $z=1+2 i$, then find the value of $z^{3}+7 z^{2}-z+16$.
46. Show that if $\left|\frac{z-5 i}{z+5 i}\right|=1$, then z is a real number.
47. (i) If $z=x+i y$ and $\left|\frac{z-2}{z-3}\right|=2$, show that $3\left(x^{2}+y^{2}\right)-20 x+32=0$.
(NCERT Examplar Problems)
(ii) If $z=x+i y$ and $\frac{|z-1-i|+4}{3|z-1-i|-2}=1$, show that $x^{2}+y^{2}-2 x-2 y=7$.
48. Find the least positive integral value of n for which $\left(\frac{1+i}{1-i}\right)^{n}$ is a real number.
49. Find the real value of θ such that $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is a real number.
50. If z is a complex number such that $|z|=1$, prove that $\frac{z-1}{z+1}(z \neq-1)$ is purely imaginary. What is the exception?
(NCERT Examplar Problems)
51. If z_{1}, z_{2} and z_{3} are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1$, then find the value of $\left|z_{1}+z_{2}+z_{3}\right|$.
(NCERT Examplar Problems)

5.2 ARGAND PLANE

We know that corresponding to every real number there exists a unique point on the number line (called real axis) and conversely corresponding to every point on the line there exists a unique real number i.e. there is a one-one correspondence between the set \mathbf{R} of real numbers and the points on the real axis.

In a similar way, corresponding to every ordered pair (x, y) of real numbers there exists a unique point P in the coordinate plane with x as abscissa and y as ordinate of the point P and conversely corresponding to every point P in the plane there exists a unique ordered pair of real numbers. Thus, there is a one-one correspondence between the set of ordered pairs $\{(x, y) ; x, y \in \mathbf{R}\}$ and the points in the coordinate plane.

The point P with co-ordinates (x, y) is said to represent the complex number $z=x+i y$.

It follows that the complex number $z=x+i y$ can be uniquely represented by the point $\mathrm{P}(x, y)$ in the co-ordinate plane and conversely corresponding to the point $\mathrm{P}(x, y)$ in the plane there exists a unique complex number $z=x+i y$. The co-ordinate plane that represents the complex numbers is called the complex plane or Argand plane.

The complex numbers $3,-2,2 i,-2 i, 2+3 i, 2-3 i$, $-2+3 i$ and $-3-3 i$ which correspond to the ordered pairs $(3,0),(-2,0),(0,2),(0,-2),(2,3),(2,-3),(-2,3)$ and $(-3,-3)$ respectively have been represented geometrically in the coordinate plane by the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H respectively in fig. 5.2.

Fig. 5.2.

Note that every real number $x=x+0 i$ is represented by point $(x, 0)$ lying on x-axis, and every purely imaginary number $i y$ is represented by point $(0, y)$ lying on y-axis. Consequently, x-axis is called the real axis and y-axis is called the imaginary axis.

If the point $\mathrm{P}(x, y)$ represents the complex number $z=x+i y$, then the distance between the points P and the origin $\mathrm{O}(0,0)=\sqrt{x^{2}+y^{2}}=|z|$. Thus, the modulus of z i.e. $|z|$ is the distance
 between points P and O (see fig. 5.3).

Geometric representation of $-z, \bar{z}$ and $-\bar{z}$. If $z=x+i y, x, y \in \mathbf{R}$ is represented by the point $\mathrm{P}(x, y)$ in the complex plane, then the complex numbers $-z, \bar{z},-\bar{z}$ are represented by the points $\mathrm{P}^{\prime}(-x,-y)$, $\mathrm{Q}(x,-y)$ and $\mathrm{Q}^{\prime}(-x, y)$ respectively in the complex plane (see fig. 5.4.).

Geometrically, the point $\mathrm{Q}(x,-y)$ is the mirror image of the point $\mathrm{P}(x, y)$ in the real axis. Thus, conjugate of z i.e. \bar{z} is the mirror image of z in the x-axis.

Fig. 5.4.

5.3 POLAR REPRESENTATION OF COMPLEX NUMBERS

Let the point $\mathrm{P}(x, y)$ represent the non-zero complex number $z=x+i y$ in the Argand plane. Let the directed line segment OP be of length $r(>0)$ and θ be the radian measure of the angle which OP makes with the positive direction of x-axis (shown in fig. 5.5). Then $r=\sqrt{x^{2}+y^{2}}=|z|$ and is called modulus of z; and θ is called amplitude or argument of z and is written as $\operatorname{amp}(z)$ or $\arg (z)$.

From figure 5.5, we see that
$x=r \cos \theta$ and $y=r \sin \theta$

$\therefore z=x+i y=r \cos \theta+i r \sin \theta=r(\cos \theta+i \sin \theta)$.
Thus, $z=r(\cos \theta+i \sin \theta)$. This form of z is called polar form of the complex number z.

(i)

(ii)

Fig. 5.6.
For any non-zero complex number z, there corresponds only one value of θ in $-\pi<\theta \leq \pi$ (see fig. 5.6). The unique value of θ such that $-\pi<\theta \leq \pi$ is called principal value of amplitude or argument.

Thus every (non-zero) complex number $z=x+i y$ can be uniquely expressed as $z=r(\cos \theta+i \sin \theta)$ where $r>0$ and $-\pi<\theta \leq \pi$ and conversely, for every $r>0$ and θ such that $-\pi<\theta \leq \pi$, we get a unique (non-zero) complex number $z=r(\cos \theta+i \sin \theta)=x+i y$.

Note that the complex number zero cannot be put into the form $r(\cos \theta+i \sin \theta)$ and so, the argument of zero complex number does not exist.

REMARK

If we take origin as the pole and the positive direction of the x-axis as the initial line, then the point P is uniquely determined by the ordered pair of real numbers (r, θ), called the polar co-ordinates of the point P (see fig. 5.6).

ILLUSTRATIVE EXAMPLES

Example 1. Convert the following complex numbers in the polar form and represent them in Argand plane:
(i) $\sqrt{3}+i$ (NCERT)
(ii) $-\sqrt{3}+i$
(NCERT)
(iii) $-1-i \sqrt{3}$
(iv) $2-2 i$
(v) -3
(NCERT)
(vi) $-5 i$.
(NCERT)

Solution. (i) Let $z=\sqrt{3}+i=r(\cos \theta+i \sin \theta)$.
Then $r \cos \theta=\sqrt{3}$ and $r \sin \theta=1$.
On squaring and adding, we get

$$
\begin{aligned}
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(\sqrt{3})^{2}+1^{2} \\
& \Rightarrow \quad r^{2}=4 \Rightarrow r=2 . \\
& \therefore \quad \cos \theta=\frac{\sqrt{3}}{2} \text { and } \sin \theta=\frac{1}{2} .
\end{aligned}
$$

The value of θ such that $-\pi<\theta \leq \pi$ and satisfying both the above equations is given by $\theta=\frac{\pi}{6}$.

Hence, $z=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$, which is the required polar form.

Fig. 5.7.

The complex number $z=\sqrt{3}+i$ is represented in fig. 5.7.

ANSWERS

EXERCISE 5.1

1. (i) -6
(ii) 6
(iii) $20 i$
(iv) -60
(v) 0
2. $-3 ;-1 ;-3+i ; \sqrt{10}$.
3. Yes
4. Yes
5. (i) $x=\frac{1}{6}, y=\frac{5}{2}$
(ii) $x=2, y=-\frac{\sqrt{3}}{2}$
(iii) $x=\frac{7}{2}, y=\frac{2}{3}$
6. $x=-2, y=1$
7. $x=2, y=-\frac{2}{3}$
8. $x=2, y=-1$
9. (i) $\frac{5}{8}+i 0$
(ii) $3+i 0$
10. (i) $2-7 i$
(ii) $-\frac{19}{5}-\frac{21}{10} i$
11. (i) $1-\frac{1}{2} i$
(ii) $74+i 0$
12. (i) $(-6+\sqrt{2})+\sqrt{3}(1+2 \sqrt{2}) i$
(ii) $16-30 i$
13. (i) $-\frac{47}{8}-\frac{13}{2} i$
(ii) $-10-198 i$
14. (i) $-\frac{242}{27}-26 i$
(ii) $54 \sqrt{5}-378 i$
15. (i) $0-i$
(ii) $0+i$
16. (i) $0+8 i$
(ii) $0+i 0$
17. -4
18. (i) i
(ii) i
19.
20. (i) $\frac{1}{2}+\frac{1}{2} i$
(ii) $0-i$
21. (i) 65
(ii) $\frac{13}{5}$
22. (i) $\frac{13}{5}$
(ii) 64
23. (i) $\frac{1}{4}$
(ii) $\sqrt{x^{2}+y^{2}}$
24. i
25. $8+i$
26. 2
27. (i) $0+i 0$
(ii) $0+i$
28. (i)
(ii) $16+i 0$
29. (i) $\frac{2}{13}+\frac{3}{13} i$
(ii) $\frac{4}{25}+\frac{3}{25} i$
(iii) $\frac{3}{16}-\frac{\sqrt{7}}{16} i$
30. (i) $\frac{21}{25}-\frac{47}{25} i$
(ii) $-\frac{1}{4}-\frac{\sqrt{3}}{4}$
(iii) $\frac{2}{5}+\frac{29}{5} i$
(iv) $\frac{8}{65}+\frac{1}{65} i$
(v) $\frac{1}{2}+\frac{1}{2} i$
(vi) $\frac{63}{25}-\frac{16}{25} i$
31. (i) $\frac{40}{41}-\frac{9}{41} i ; \frac{40}{41}+\frac{9}{41} i ; 1$
(ii) $1+i ; 1-i ; \sqrt{2}$
(iii) $-1+i ;-1-i ; \sqrt{2}$
(iv) $-9+46 i ;-9-46 i ; \sqrt{2197}$
32. (i) $0+\frac{1}{2} i$
(iii) 1
(iv) 2^{n}
33. (i) $\frac{11}{5}$
(ii) $\frac{1}{5}$
(iii) 0
34. (i) $x=\frac{5}{13}, y=\frac{14}{13}$
(ii) $x=6, y=1$
(iii) $x=\frac{2}{21}, y=-\frac{8}{21}$
35. (i) $\frac{3}{2}-2 i$ is the only solution
(ii) all purely imaginary numbers
36. $-17+24 i$
37. 2
38. $(2 n+1) \frac{\pi}{2}, n \in \mathbf{I}$
39. Exception is $z=1$
40. 1

EXERCISE 5.2

1. (i) True
(ii) True
(iii) True
(iv) True
(v) True
2. 0
3. $-\theta$
4. $(i)-\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(ii) $1-i$
(iii) $0-3 i$
(iv) $\frac{5}{2}+\frac{5 \sqrt{3}}{2} i$
5. $-2 \sqrt{3}+2 i$
