Circle

Question 1.
Calculate the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm .
Solution:
$A B$ is chord of a circle with centre O and OA is its radius $\mathrm{OM} \perp \mathrm{AB}$.

$\therefore \mathrm{OA}=13 \mathrm{~cm}, \mathrm{OM}=12 \mathrm{~cm}$
Now in right $\triangle \mathrm{OAM}$,

$$
\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}
$$

(By Pythagorus Axiom)
$\Rightarrow(13)^{2}=(12)^{2}+\mathrm{AM}^{2}$
$\Rightarrow \mathrm{AM}^{2}=(13)^{2}-(12)^{2}$
$\Rightarrow \mathrm{AM}^{2}=169-144=25=(5)^{2}$
$\Rightarrow \mathrm{AM}=5 \mathrm{~cm}$.
$\because \mathrm{OM} \perp \mathrm{AB}$
$\therefore \mathrm{M}$ is the mid-point of $A B$.
$\therefore \quad \mathrm{AB}=2 \mathrm{AM}=2 \times 5=10 \mathrm{~cm}$

Question 2.
A chord of length 48 cm is drawn in a circle of radius 25 cm . Calculate its distance from the centre of the circle.
Solution:
$A B$ is the chord of the circle with centre O and radius OA and $\mathrm{OM} \perp \mathrm{AB}$.

$\therefore \mathrm{AB}=48 \mathrm{~cm}$, $\mathrm{OA}=25 \mathrm{~cm}$
$\because \mathrm{OM} \perp \mathrm{AB}$
$\therefore \mathrm{M}$ is the mid-point of AB
$\therefore \mathrm{AM}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 48=24 \mathrm{~cm}$.
Now in right $\triangle \mathrm{OAM}$,
$\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}$
(By Pythagorus Axiom)
$\Rightarrow(25)^{2}=\mathrm{OM}^{2}+(24)^{2}$
$\Rightarrow \mathrm{OM}^{2}=(25)^{2}-(24)^{2}=625-576$
$=49=(7)^{2}$
$\therefore \quad \mathrm{OM}=7 \mathrm{~cm}$

Question 3.
A chord of length 8 cm is at a distance of 3 cm from the centre of the circle. Calculate the radius of the circle.
Solution:
$A B$ is the chord of a circle with centre O and radius OA and $\mathrm{OM} \perp \mathrm{AB}$

$\therefore \mathrm{AB}=8 \mathrm{~cm}$

$$
\mathrm{OM}=3 \mathrm{~cm}
$$

$\because \mathrm{OM} \perp \mathrm{AB}$
$\therefore \mathrm{M}$ is the mid-point of $A B$
$\therefore \mathrm{AM}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 8=4 \mathrm{~cm}$.
Now in right $\triangle \mathrm{OAM}$,

$$
\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}
$$

(By Pythagorus Axiom)

$$
=(3)^{2}+(4)^{2}=9+16=25
$$

$$
=(5)^{2}
$$

$\therefore \quad \mathrm{OA}=5 \mathrm{~cm}$.

Question 4.
Calculate the length of the chord which is at a distance of 6 cm from the centre of a circle of diameter 20 cm .
Solution:
$A B$ is the chord of the circle with centre O and radius OA and $\mathrm{OM} \perp \mathrm{AB}$

\therefore Diameter of the circle $=20 \mathrm{~cm}$
\therefore Radius $=\frac{20}{2}=10 \mathrm{~cm}$
$\therefore \mathrm{OA}=10 \mathrm{~cm}, \mathrm{OM}=6 \mathrm{~cm}$
Now in right \triangle OAM,

$$
\mathrm{OA}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2}
$$

(By Pythagorus Axiom)
$\Rightarrow(10)^{2}=\mathrm{AM}^{2}+(6)^{2}$
$\Rightarrow \mathrm{AM}^{2}=10^{2}-6^{2}$
$\Rightarrow \mathrm{AM}^{2}=100-36=64=(8)^{2}$
$\therefore \mathrm{AM}=8 \mathrm{~cm}$
$\because \mathrm{OM} \perp \mathrm{AB}$
$\therefore \mathrm{M}$ is the mid-point of $A B$.
$\therefore \mathrm{AB}=2 \mathrm{AM}=2 \times 8=16 \mathrm{~cm}$.

Question 5.
A chord of length 16 cm is at a distance of 6 cm from the centre of the circle. Find the length of the chord of the same circle which is at a distance of 8 cm from the centre.
Solution:

$\therefore \mathrm{AB}=16 \mathrm{~cm}, \mathrm{OM}=6 \mathrm{~cm}$
$\because \mathrm{OM} \perp \mathrm{AB}$
$\therefore \mathrm{AM}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 16=8 \mathrm{~cm}$.
Now in right $\triangle \mathrm{OAM}$,

$$
\mathrm{OA}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2}
$$

(By Pythagorous Axiom)
$=(8)^{2}+(6)^{2}$
$=64+36=100=(10)^{2}$
$\therefore \mathrm{OA}=10 \mathrm{~cm}$.
Now CD is another chord of the same circle $\mathrm{ON} \perp \mathrm{CD}$ and OC is the radius.
\therefore In right $\triangle \mathrm{ONC}$

$$
\mathrm{OC}^{2}=\mathrm{ON}^{2}+\mathrm{NC}^{2}
$$

(By Pythagorous Axioms)
$\Rightarrow(10)^{2}=(8)^{2}+(\mathrm{NC})^{2}$
$\Rightarrow 100=64+\mathrm{NC}^{2}$
$\Rightarrow \mathrm{NC}^{2}=100-64=36=(6)^{2}$.
$\therefore \quad N C=6$
But $O N \perp A B$
$\therefore \mathrm{N}$ is the mid-point of CD
$\therefore \quad \mathrm{CD}=2 \mathrm{NC}=2 \times 6=12 \mathrm{~cm}$

Question 6.

In a circle of radius $5 \mathrm{~cm}, \mathrm{AB}$ and CD are two parallel chords of length 8 cm and 6 cm respectively. Calculate the distance between the chords if they are on :
(i) the same side of the centre.
(ii) the opposite sides of the centre.

Solution:
Two chords AB and CD of a circle with centre O and radius OA or OC

(i)

In right $\triangle \mathrm{OAM}$,

$$
\begin{aligned}
& \mathrm{OA}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2} \\
& \text { (By Pythagorus Axiom) } \\
& \Rightarrow(5)^{2}=(4)^{2}+\mathrm{OM}^{2} \\
& \left(\because \mathrm{AM}=\frac{1}{2} \mathrm{AB}\right) \\
& \Rightarrow \quad 25=16+\mathrm{OM}^{2} \\
& \Rightarrow \mathrm{OM}^{2}=25-16=9=(3)^{2} \\
& \therefore \quad \mathrm{OM}=3 \mathrm{~cm} \text {. } \\
& \text { Again in right } \triangle \mathrm{OCN} \text {, } \\
& \mathrm{OC}^{2}=\mathrm{CN}^{2}+\mathrm{ON}^{2} \\
& \Rightarrow(5)^{2}=(3)^{2}+\mathrm{ON}^{2} \\
& \left(\because \mathrm{CN}=\frac{1}{2} \mathrm{CD}\right) \\
& \Rightarrow \quad 25=9+\mathrm{ON}^{2} \\
& \Rightarrow \mathrm{ON}^{2}=25-9=16=(4)^{2} \\
& \therefore \quad \mathrm{ON}=4
\end{aligned}
$$

In fig. (i), distance $\mathrm{MN}=\mathrm{ON}-\mathrm{OM}$

$$
=4-3=1 \mathrm{~cm} .
$$

In fig. (ii)
$\mathrm{MN}=\mathrm{OM}+\mathrm{ON}=3+4=7 \mathrm{~cm}$

Question 7.

(a) In the figure given below, O is the centre of the circle. $A B$ and CD are two chords of the circle, $O M$ is perpendicular to $A B$ and $O N$ is perpendicular to $C D$. $A B=24 \mathrm{~cm}, O M=5 \mathrm{~cm}, O N=12 \mathrm{~cm}$. Find the:
(i) radius of the circle.
(ii) length of chord CD.

(b) In the figure (ii) given below, $C D$ is the diameter which meets the chord $A B$ in
E such that $A E=B E=4 \mathrm{~cm}$. If $C E=3 \mathrm{~cm}$, find the radius of the circle.

Solution:

Question 8.

In the adjoining figure, AB and CD ate two parallel chords and O is the centre. If the radius of the circle is 15 cm , find the distance MN between the two chords of length 24 cm and 18 cm respectively.

Solution:

647

Question 9.

$A B$ and CD are two parallel chords of a circle of lengths 10 cm and 4 cm respectively. If the chords lie on the same side of the centre and the distance between them is 3 cm , find the diameter of the circle.
Solution:
$A B$ and $C D$ are two parallel chords and $A B$

.

Question 10.
$A B C$ is an isosceles triangle inscribed in a circle. If $A B=A C=12 \sqrt{ } 5 \mathrm{~cm}$ and $B C=$ 24 cm , find the radius of the circle.
Solution:
$\mathrm{AB}=\mathrm{AC}=12 \sqrt{5}$ and $\mathrm{BC}=24 \mathrm{~cm}$.

Join OB and OC and OA.
Draw $\mathrm{AD} \perp \mathrm{BC}$ which will pass through centre O .
$\therefore \mathrm{OD}$ bisects BC in D
$\therefore \mathrm{BD}=\mathrm{DC}=12 \mathrm{~cm}$.
In right $\triangle A B D$

$$
\begin{aligned}
& A B^{2}=A D^{2}+\mathrm{BD}^{2} \\
\Rightarrow & (12 \sqrt{5})^{2}=\mathrm{AD}^{2}+(12)^{2} \\
\Rightarrow & 144 \times 5=\mathrm{AD}^{2}+144 \\
\Rightarrow & 720-144=A D^{2} \\
\Rightarrow & A D^{2}=576 \Rightarrow \mathrm{AD}=\sqrt{576}=24
\end{aligned}
$$

Let radius of the circle $=\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=r$

$$
\therefore \mathrm{OD}=\mathrm{AD}-\mathrm{AO}=24-r
$$

Now in right $\triangle \mathrm{OBD}$,

$$
\begin{aligned}
\mathrm{OB}^{2} & =\mathrm{BD}^{2}+\mathrm{OD}^{2} \\
\Rightarrow \quad r^{2} & =(12)^{2}+(24-r)^{2} \\
\Rightarrow \quad r^{2} & =144+576+r^{2}-48 r \\
\Rightarrow 48 r & =720 \\
r & =\frac{720}{48}=15 \mathrm{~cm} .
\end{aligned}
$$

\therefore Radius $=15 \mathrm{~cm}$

Question 11.

An equilateral triangle of side $\mathbf{6 c m}$ is inscribed in a circle. Find the radius of the circle.
Solution:
$A B C$ is an equilateral triangle inscribed in a circle with centre O. Join OB and OC .
From A, draw $A D \perp B C$ which will pass through the centre O of the circle.

\because Each side of $\triangle \mathrm{ABC}=6 \mathrm{~cm}$.

$$
\begin{aligned}
\therefore \quad \mathrm{AD} & =\frac{\sqrt{3}}{2} a=\frac{\sqrt{3}}{2} \times 6=3 \sqrt{3} \mathrm{~cm} \\
\mathrm{OD} & =\mathrm{AD}-\mathrm{AO}=3 \sqrt{3}-r
\end{aligned}
$$

Now in right $\triangle \mathrm{OBD}$,

$$
\left.\begin{array}{l}
\quad \mathrm{OB}^{2}=\mathrm{BD}^{2}+\mathrm{OD}^{2} \\
\Rightarrow \quad r^{2}=(3)^{2}+(3 \sqrt{3}-r)^{2} \\
\Rightarrow \quad r^{2}=9+27+r^{2}-6 \sqrt{3} r \\
\\
\\
\\
\\
\\
\end{array} \quad \because \mathrm{D} \text { is mid-point of } \mathrm{BC}\right) \text {) }
$$

$$
6 \sqrt{3} r=36
$$

$$
r=\frac{36}{6 \sqrt{3}}=\frac{6 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{6 \sqrt{3}}{3}=2 \sqrt{3} \mathrm{~cm}
$$

$$
\therefore \text { Radius }=2 \sqrt{3} \mathrm{~cm}
$$

Question 12.
$A B$ is a diameter of a circle. M is a point in $A B$ such that $A M=18 \mathrm{~cm}$ and $M B=8$ cm . Find the length of the shortest chord through M.
Solution:
In a circle with centre $O, A B$ is the diameter and M is a point on $A B$ such that

$\mathrm{AM}=18 \mathrm{~cm}$ and $\mathrm{MB}=8 \mathrm{~cm}$
$\therefore \mathrm{AB}=\mathrm{AM}+\mathrm{MB}=18+8=26 \mathrm{~cm}$
\therefore Radius of the circle $=\frac{26}{2}=13 \mathrm{~cm}$
Let $C D$ is the shortest chord drawn through M.
$\therefore \mathrm{CD} \perp \mathrm{AB}$.
Join OC.

$$
\begin{aligned}
\mathrm{OM} & =\mathrm{AM}-\mathrm{AO}=18-13=5 \mathrm{~cm} \\
\mathrm{OC} & =\mathrm{OA}=13 \mathrm{~cm} .
\end{aligned}
$$

Now in right $\triangle \mathrm{OMC}$,

$$
\mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{MC}^{2}
$$

$$
\Rightarrow(13)^{2}=(5)^{2}+\mathrm{MC}^{2} \Rightarrow \mathrm{MC}^{2}=13^{2}-5^{2}
$$

$$
\Rightarrow M C^{2}=169-25=144=(12)^{2}
$$

$\therefore \quad \mathrm{MC}=12$
$\because \mathrm{M}$ is mid-point of CD
$\therefore \mathrm{CD}=2 \times \mathrm{MC}=2 \times 12=24 \mathrm{~cm}$

Question 13.
A rectangle with one side of length 4 cm is inscribed in a circle of diameter 5 cm . Find the area of the rectangle.
Solution:
$A B C D$ is a rectangle inscribed in a circle with centre O and diameter 5 cm .

$$
\mathrm{AB}=4 \mathrm{~cm} \text { and } \mathrm{AC}=5 \mathrm{~cm}
$$

In right $\triangle \mathrm{ABC}$,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\Rightarrow(5)^{2}=(4)^{2}+\mathrm{BC}^{2} \Rightarrow \mathrm{BC}^{2}=5^{2}-4^{2}$
$\Rightarrow \mathrm{BC}^{2}=25-16=9=(3)^{2}$
$\therefore B C=3 \mathrm{~cm}$.
\therefore Area of rectangle $\mathrm{ABCD}=\mathrm{AB} \times \mathrm{BC}$
$=4 \times 3=12 \mathrm{~cm}^{2}$

Question 14.

The length of the common chord of two intersecting circles is 30 cm . If the radii of the two circles are $\mathbf{2 5} \mathbf{~ c m}$ and 17 cm , find the distance between their centres.
Solution:
AB is the common chord of two circles with centre O and C. Join OA, CA and OC

$\mathrm{AB}=30 \mathrm{~cm}$
$\mathrm{OA}=25 \mathrm{~cm}$ and $\mathrm{AC}=17 \mathrm{~cm}$
$\therefore \mathrm{OC}$ is the perpendicular bisector of AB
at M .
$\therefore \mathrm{AM}=\mathrm{MB}=15 \mathrm{~cm}$.
In right $\triangle \mathrm{OAM}$,

$$
\begin{aligned}
& \mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2} \\
\Rightarrow \quad & 25^{2}=\mathrm{OM}^{2}+(15)^{2} \\
\Rightarrow & \mathrm{OM}^{2}=25^{2}-15^{2} \\
& =625-225=400=(20)^{2}
\end{aligned}
$$

$\therefore \quad \mathrm{OM}=20 \mathrm{~cm}$.
Again in $\triangle \mathrm{AMC}$,

$$
\begin{aligned}
& \mathrm{AC}^{2}= \\
& \Rightarrow \quad \mathrm{AM}^{2}+\mathrm{MC}^{2} \\
& \Rightarrow \quad 17^{2}=15^{2}+\mathrm{MC}^{2} \\
& \Rightarrow \quad \mathrm{MC}^{2}=17^{2}-15^{2} \\
& \Rightarrow \quad \mathrm{MC}^{2}=289-225=64=(8)^{2} \\
& \therefore \quad \mathrm{MC}=8 \mathrm{~cm}
\end{aligned}
$$

Now $\mathrm{OC}=\mathrm{OM}+\mathrm{MC}$,

$$
=20+8=28 \mathrm{~cm}
$$

Question 15

The line joining the mid-points of two chords of a circle passes through its centre. Prove that the chords are parallel.
Solution:
Given : Two chords $A B$ and $C D$ where L and M are the mid-points of AB and CD respectively. LM passes through O, the centre of the circle.

To Prove : AB || CD.
Proof : \because L is mid-point of $A B$.
$\therefore \mathrm{OL} \perp \mathrm{AB}$
$\therefore \angle \mathrm{OLA}=90^{\circ}$
Again M is mid point of CD
$\therefore \quad \mathrm{OM} \perp \mathrm{CD}$
$\therefore \angle \mathrm{OMD}=90^{\circ}$
From (i) and (ii)
$\angle \mathrm{OLA}=\angle \mathrm{OMD}$
But these are alternate angles
$\therefore \quad \mathrm{AB} \| \mathrm{CD}$
Q.E.D.

Question 16.

If a diameter of a circle is perpendicular to one of two parallel chords of the circle, prove that it is perpendicular to the other and bisects it.
Solution:
Given : Chord AB \| CD
and diameter PQ is perpendicular to AB

To Prove : PQ is perpendicular to CD .

Proof: \because Diameter PQ is perpendicular to AB.
$\therefore \angle \mathrm{AMO}=90^{\circ}$
$\therefore \mathrm{PQ}$ bisects AB
$\because \quad A B \| C D$
$\therefore \angle \mathrm{OLD}=90^{\circ}$
(given)
$\therefore \mathrm{OL}$ or PQ is perpendicular to $C D$.
Hence PQ bisects CD.
Q.E.D.

Question 17.

In an equilateral triangle, prove that the centroid and the circumcentre of the triangle coincide.
Solution:
Given: $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$.
To Prove : The centroid and the circumcentre coincide each other.

Construction : Draw perpendicular bisectors of $A B$ and $B C$ intersecting each other at O . Join AD, OB and OC .
Proof: \because O lies on the perpendicular bisectors of $A B$ and $B C$
$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
$\therefore \mathrm{O}$ is the cimcumcentre of $\triangle \mathrm{ABC}$.
$\because \mathrm{D}$ is mid-point of BC .
$\therefore \mathrm{AD}$ is the median of $\triangle \mathrm{ABC}$.
Now in $\triangle A B D$ and $\triangle A C D$,
$\mathrm{AB}=\mathrm{AC}$
(given)
$A D=A D$
(common)
$B D=B C \quad(\because D$ is mid-point of $B C)$
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(SSS axiom of congruency)
$\therefore \quad \angle \mathrm{ADB}=\angle \mathrm{ADC}$
But $\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$
(Linear pair)
$\therefore \quad \angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$\therefore \mathrm{AD}$ is perpendicular on BC which passes through O .
Hence centroid and circumcentre of $\triangle A B C$ coincide each other.
Q.E.D.

Question 18.

(a) In the figure (i) given below, OD is perpendicular to the chord $A B$ of a circle whose centre is O. If $B C$ is a diameter, show that $C A=2 O D$.
(b) In the figure (ii) given below, O is the centre of a circle. If $A B$ and $A C$ are chords of the circle such that $A B=A C$ and $O P \perp A B, O Q \perp A C$, Prove that $P B=$ QC.

Solution:
(a) Given : OD is perpendicular to chord $A B$ of the circle and $B O C$ is the diameter.
CA is joined.
To Prove : $\mathrm{CA}=2 \mathrm{OD}$.
Proof : $\because O D \perp A B$

$\therefore \mathrm{D}$ is mid point of AB and O is the mid point of BC.
\therefore In $\triangle \mathrm{BAC}$,
$\mathrm{OD} \| \mathrm{CA}$ and $\mathrm{OD}=\frac{1}{2} \mathrm{CA}$
$\Rightarrow \mathrm{CA}=2 \mathrm{OD} \quad$ Q.E.D.
(b) Given : AB and AC are chords of a circle with centre O and $A B=A C, O P \perp A B$ and $\mathrm{OQ} \perp \mathrm{AC}$. BP and QC are joined.

To Prove : $\mathrm{PB}=\mathrm{QC}$.
Proof: $\because O P \perp A B$
(given)
$\therefore \mathrm{M}$ is mid-point of AB
$\therefore \quad \mathrm{AM}=\mathrm{MB} \Rightarrow \mathrm{MB}=\frac{1}{2} \mathrm{AB}$
Similarly $O Q \perp A C$
$\therefore \quad \mathrm{AN}=\mathrm{NC} \Rightarrow \mathrm{NC}=\frac{1}{2} \mathrm{AC}$.
But $\mathrm{AB}=\mathrm{AC}$
$\therefore \quad \mathrm{MB}=\mathrm{NC}$
\because Chord $\mathrm{AB}=$ Chord AC
$\therefore \mathrm{OM}=\mathrm{ON}$
But $O P=O Q \quad$ (radii of the same circle)
$\therefore \quad \mathrm{MP}=\mathrm{NQ}$
Now in $\triangle \mathrm{MPB}$ and $\triangle \mathrm{NQC}$,

$$
\left.\begin{array}{rlr}
\mathrm{MB} & =\mathrm{NC} \\
\mathrm{MP} & =\mathrm{NQ} & (\text { proved }) \\
\angle \mathrm{PMB}=\angle \mathrm{QNC} & (\text { proved }) \\
\therefore \Delta \mathrm{MPB} \cong & \Delta \mathrm{NQC} & \\
& \left(\text { each } 90^{\circ}\right)
\end{array}\right]
$$

Question 19.
(a) In the figure (i) given below, a line I intersects two concentric circles at the points A, B, C and D. Prove that $A B=C D$.
(b) In the figure (it) given below, chords $A B$ and $C D$ of a circle with centre O intersect at E. If $O E$ bisects $\angle A E D$, Prove that $A B=C D$.

Solution:
(a) Given : A line l intersects two concentric circles with centre O .
To Prove : AB = CD
Construction : Draw $\mathrm{OM} \perp l$.

Proof: \because OM \perp BC.
$\therefore \mathrm{BM}=\mathrm{MC}$
Again $\mathrm{OM} \perp \mathrm{AD}$
$\therefore \mathrm{AM}=\mathrm{MD}$.
Substracting (i) from (ii)

$$
\begin{aligned}
\mathrm{AM}-\mathrm{BM} & =\mathrm{MD}-\mathrm{MC} \\
\Rightarrow \quad \mathrm{AB} & =\mathrm{CD}
\end{aligned}
$$

(b) Given : Two chords AB and CD intersect each other at E inside the circle with centre O. OE bisects $\angle \mathrm{AED}$ i.e. $\angle \mathrm{OEA}=\angle \mathrm{OED}$.

To Prove : $\mathrm{AB}=\mathrm{CD}$
Construction : From O, draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$.
Proof : In $\triangle O M E$ and $\triangle O N E$

$$
\angle \mathrm{M}=\angle \mathrm{N}
$$

$$
\mathrm{OE}=\mathrm{OE}
$$

(common)

$$
\begin{equation*}
\angle \mathrm{OEM}=\angle \mathrm{OEN} \tag{given}
\end{equation*}
$$

$\therefore \quad \triangle \mathrm{OME} \cong \triangle \mathrm{ONE}$
(ASS axiom of congruency)
$\therefore \quad \mathrm{OM}=\mathrm{ON}$
$\therefore \quad \mathrm{AB}=\mathrm{CD}$
(chords which are equidistant
from the centre are equal)
Q.E.D.

Question 20.

(a) In the figure (i) given below, AD is a diameter of a circle with centre 0 .

If $A B|\mid C D$, prove that $A B=C D$.
(b) In the figure (ii) given below, $A B$ and $C D$ are equal chords of a circle with centre O. If $A B$ and $C D$ meet at E (outside the circle) Prove that :
(i) $A E=C E$ (ii) $B E=D E$.

(i)

(ii)

Solution:
(a) Given : AD is the diameter of a circle with centre O and chords $A B$ and $C D$ are parallel.

To Prove : $\mathrm{AB}=\mathrm{CD}$.
Construction : From O , draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$
Proof : In $\triangle O M A$ and $\triangle O N D$,
$\angle \mathrm{AOM}=\angle \mathrm{DON}$
(Vertically opposite angles)
$\mathrm{OA}=\mathrm{OD} \quad$ (radii of the same circle)
and $\angle \mathrm{M}=\angle \mathrm{N} \quad$ (each 90°)
$\therefore \triangle \mathrm{OMA} \cong \triangle \mathrm{OND}$
(AAS axiom of congruency)
$\therefore \quad \mathrm{OM}=\mathrm{ON}$
But $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$
$\therefore \quad \mathrm{AB}=\mathrm{CD}$
(chords which are equidistant from the centre are equal)
(b) Given : Chord $\mathrm{AB}=$ chord CD of circle with centre O . and meet at E on producing them.

To Prove : (i) $\mathrm{AE}=\mathrm{CE}$
(ii) $\mathrm{BE}=\mathrm{DE}$

Construction : From O , draw $\mathrm{OM} \perp \mathrm{AB}$
and $\mathrm{ON} \perp \mathrm{CD}$. Join OE
In right $\triangle \mathrm{OME}$ and $\triangle \mathrm{ONE}$
Hyp. $\mathrm{OE}=\mathrm{OE}$
(Common)

Side $\mathrm{OM}=\mathrm{ON}$
(Equal chords are equidistant from the centre)
$\therefore \triangle \mathrm{OME} \cong \triangle \mathrm{ONE}$
(R.H.S. axiom of congruency)
$\therefore \quad \mathrm{ME}=\mathrm{NE}$
$\because \mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$
$\therefore \mathrm{M}$ is mid-point of AB and N is mid point of CD.
$\therefore \quad \mathrm{MB}=\frac{1}{2} \mathrm{AB}$ and $\mathrm{ND}=\frac{1}{2} \mathrm{CD}$
But $A B=C D$
$\therefore \mathrm{MB}=\mathrm{ND}$
\therefore Subtracting, (ii) from (i)
$\mathrm{ME}-\mathrm{MB}=\mathrm{NE}-\mathrm{ND}$
$\Rightarrow \quad \mathrm{BE}=\mathrm{DE}$
But $A B=C D$
\therefore Adding, we get

$$
\begin{aligned}
\mathrm{AB}+\mathrm{BE} & =\mathrm{CD}+\mathrm{DE} \\
\Rightarrow \quad \mathrm{AE} & =\mathrm{CE} \quad \text { (Hence proved) }
\end{aligned}
$$

EXERCISE 15.2

Question 1.
If arcs APB and CQD of a circle are congruent, then find the ratio of $A B: C D$.
Solution:

$$
\overparen{\mathrm{APB}}=\overparen{\mathrm{CQD}}
$$

(given)
$\therefore \mathrm{AB}=\mathrm{CD}$
(\because If two arcs are congruent, then their corresponding chords are equal)
\therefore Ratio of $A B$ and $C D=\frac{A B}{C D}=\frac{A B}{A B}=\frac{1}{1}$
$\Rightarrow \mathrm{AB}: \mathrm{CD}=1: 1$

Question 2.

A and B are points on a circle with centre O. C is a point on the circle such that $O C$ bisects $\angle A O B$, prove that $O C$ bisects the $\operatorname{arc} A B$.

Solution:

Given : In a given circle with centre O, A and B are two points on the circle. $\mathrm{C} \mathrm{i}^{-}$ another point on the circle such that
$\angle \mathrm{AOC}=\angle \mathrm{BOC}$

To prove : arc AC= arc BC
Proof: $\because O C$ is the bisector of $\angle A O B$
or $\angle \mathrm{AOC}=\angle \mathrm{BOC}$
But these are the angle subtended by the $\operatorname{arc} \mathrm{AC}$ and BC .
$\therefore \operatorname{arc} \mathrm{AC}=\operatorname{arc} \mathrm{BC}$.
Q.E.D.

Question 3.

Prove that the angle subtended at the centre of a circle is bisected by the radius
passing through the mid-point of the arc.
Solution:

$\therefore \angle \mathrm{AOC}=\angle \mathrm{BOC}$
Hence OC bisects the $\angle \mathrm{AOB}$.
Q.E.D.

Question 4.
In the given figure, two chords $A B$ and $C D$ of a circle intersect at P. If $A B=C D$, prove that arc AD = arc CB.
Solution:

Given : Two chords $A B$ and $C D$ of a circle intersect at P and $A B=C D$.
To prove : arc $A D=\operatorname{arc} C B$ Proof: $\mathrm{AB}=\mathrm{CD}$
\therefore minor arc $\mathrm{AB}=$ minor arc CD
Subtracting arc BD from both sides
$\operatorname{arc} A B-\operatorname{arc} B D=\operatorname{arc} C D-\operatorname{arc} B D$
$\Rightarrow \operatorname{arc} A D=\operatorname{arc} C D$
Q.E.D.

Multiple Choice Questions

Choose the correct answer from the given four options (1 to 6) :
Question 1.
If P and Q are any two points on a circle, then the line segment $P Q$ is called a
(a) radius of the circle
(b) diameter of the circle
(c) chord of the circle
(d) secant of the circle

Solution:
chord of the circle (c)

Question 2.

If P is a point in the interior of a circle with centre O and radius r, then
(a) $O P=r$
(b) OP > r
(c) $O P \geq r$
(d) $\mathrm{OP}<\mathrm{r}$

Solution:
OP > r (b)

Question 3.

The circumference of a circle must be
(a) a positive real number
(b) a whole number
(c) a natural number
(d) an integer

Solution:
a positive real number (a)

Question 4.

$A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}$ and $A B=30 \mathrm{~cm}$, then the distance of $A B$ from the centre of circle is
(a) 17 cm
(b) 15 cm
(c) 4 cm
(d) 8 cm

Solution:
AD is the diameter of the circle whose length is $\mathrm{AD}=34 \mathrm{~cm}$
$A B$ is the chord of the circle whose length is $A B=30 \mathrm{~cm}$

Distance of the chord from the centre is OM Since the line through the centre of the chord of the circle is the perpendicular bisector, we have $\angle \mathrm{OMA}=90^{\circ}$
and $A M=B M$
Thus, $\triangle \mathrm{AMO}$ is a right angled triangle
Now, by applying Pythagorean Theorem,
$\mathrm{OA}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2}$
Since the diameter $\mathrm{AD}=34 \mathrm{~cm}$, radius of the circle is 17 cm
$\therefore \mathrm{OA}=17 \mathrm{~cm}$
Since $A M=B M$ and $A B=30 \mathrm{~cm}$
\therefore We have $\mathrm{AM}=\mathrm{BM}=15 \mathrm{~cm}$
We have, $\mathrm{OA}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2}$
$17^{2}=15^{2}+\mathrm{OM}^{2}$
$\mathrm{OM}^{2}=289-225$
$\mathrm{OM}^{2}-64$.
$\mathrm{OM}=\sqrt{64}=8 \mathrm{~cm}$

Question 5.

If $A B=12 \mathrm{~cm}, B C=16 \mathrm{~cm}$ and $A B$ is perpendicular to $B C$, then the radius of the circle passing through the points A, B and C is
(a) 6 cm
(b) 8 cm
(c) 10 cm
(d) 12 cm

Solution:
Give that $\mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{BC}=16 \mathrm{~cm}$ and
$\angle \mathrm{ABC}=90^{\circ}$

Every angle inscribed in a semicircle is a right angle.
Since the inscribed angle
$\angle A B C=90^{\circ}$, the arc $A B C$ is a semicircle
Thus, AC is the diameter of the circle passing through the centre.
Now, by Pythagoras Theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=12^{2}+16^{2}$
$=14+256=400$
$\mathrm{AC}=\sqrt{400}=20 \mathrm{~cm}$
\therefore Diameter of the circle is 20 cm
Thus, the radius of the circle passing through
A, B and C is 10 cm .
(c)

Question 6.
In the given figure, O is the centre of the circle. If $O A=5 \mathrm{~cm}, A B=8 \mathrm{~cm}$ and $O D \perp$ $A B$, then length of $C D$ is equal to
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm

Solution:

$\mathrm{OC}=\sqrt{\mathrm{AO}^{2}-\mathrm{AC}^{2}}$
$=\sqrt{25-16}=\sqrt{9} \mathrm{~cm}=3 \mathrm{~cm}$
Since, $O D=O A=5 \mathrm{~cm}$
$\therefore \mathrm{CD}=\mathrm{OD}-\mathrm{OC}=5-3 \mathrm{~cm}=2 \mathrm{~cm}$

Chapter Test

Question 1.
In the given figure, a chord PQ of a circle with centre O and radius 15 cm is bisected at M by a diameter $A B$. If $\mathrm{OM}=9 \mathrm{~cm}$, find the lengths of :
(i) PQ
(ii) $A P$
(iii) $B P$

Solution:
Given, radius $=15 \mathrm{~cm}$
$\Rightarrow \mathrm{OA}=\mathrm{OB}=\mathrm{OP}=\mathrm{OQ}=15 \mathrm{~cm}$
Also, $\mathrm{OM}=9 \mathrm{~cm}$

$\therefore \mathrm{MB}=\mathrm{OB}-\mathrm{OM}=15-9=6 \mathrm{~cm}$
$\mathrm{AM}=\mathrm{OA}+\mathrm{OM}=15+9 \mathrm{~cm}=24 \mathrm{~cm}$
In $\triangle \mathrm{OMP}$, by using Pythagoras Theoream,

$$
\mathrm{OP}^{2}=\mathrm{OM}^{2}+\mathrm{PM}^{2}
$$

$$
15^{2}=9^{2}+\mathrm{PM}^{2}
$$

$$
=\mathrm{PM}^{2}=225-81
$$

$\mathrm{PM}=\sqrt{144}=12 \mathrm{~cm}$
Also, In $\triangle \mathrm{OMQ}$,
by using Pythagoras Theorem,
$\mathrm{OQ}^{2}=\mathrm{OM}^{2}+\mathrm{QM}^{2}$
$15^{2}=\mathrm{OM}^{2}+\mathrm{QM}^{2}$
$15^{2}=9^{2}+\mathrm{QM}^{2} \Rightarrow \mathrm{QM}^{2}=225-81$
$\mathrm{QM}=\sqrt{144}=12 \mathrm{~cm}$
$\therefore \mathrm{PQ}=\mathrm{PM}+\mathrm{QM}$
(As radius is bisected at M)
$\Rightarrow \mathrm{PQ}=12+12 \mathrm{~cm}=24 \mathrm{~cm}$
(ii) Now in \triangle APM
$\mathrm{AP}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2}$
$\mathrm{AP}^{2}=24^{2}+12^{2}$
$\mathrm{AP}^{2}=576+144$
$\mathrm{AP}=\sqrt{720}=12 \sqrt{5} \mathrm{~cm}$
(iii) Now in $\triangle \mathrm{BMP}$

$$
\mathrm{BP}^{2}=\mathrm{BM}^{2}+\mathrm{PM}^{2}
$$

$$
\mathrm{BP}^{2}=6^{2}+12^{2}
$$

$$
\mathrm{BP}^{2}=36+144
$$

$$
\mathrm{BP}=\sqrt{180}=6 \sqrt{5} \mathrm{~cm}
$$

Question 2.

The radii of two concentric circles are 17 cm and 10 cm ; a line PQRS cuts the larger circle at P and S and the smaller circle at Q and R. If $Q R=12 \mathbf{c m}$, calculate PQ.
Solution:
A line PQRS intersects the outer circle at P and S and inner circle at Q and R . Radius of outer circle $\mathrm{OP}=17 \mathrm{~cm}$ and radius of inner circle $\mathrm{OQ}=10 \mathrm{~cm}$.

$$
\mathrm{QR}=12 \mathrm{~cm}
$$

From O , draw $\mathrm{OM} \perp \mathrm{PS}$

$$
\therefore \quad \mathrm{QM}=\frac{1}{2} \mathrm{QR}=\frac{1}{2} \times 12=6 \mathrm{~cm}
$$

In right $\triangle O Q M$,

$$
\begin{array}{ll}
& \mathrm{OQ}^{2}= \\
\Rightarrow & \mathrm{OM}^{2}+\mathrm{QM}^{2} \\
\Rightarrow & (10)^{2}=\mathrm{OM}^{2}+(6)^{2} \\
\Rightarrow & \mathrm{OM}^{2}=10^{2}-6^{2} \\
& =100-36=64=(8)^{2} \\
\therefore & \mathrm{OM}=8 \mathrm{~cm}
\end{array}
$$

Now in right $\triangle \mathrm{OPM}$,

$$
\begin{array}{cc}
& \mathrm{OP}^{2}=\mathrm{OM}^{2}+\mathrm{PM}^{2} \\
\Rightarrow & (17)^{2}=(8)^{2}+\mathrm{PM}^{2} \\
\Rightarrow & \mathrm{PM}^{2}=(17)^{2}-(8)^{2} \\
& =289-64=225=(15)^{2}
\end{array}
$$

$\therefore \mathrm{PM}=15 \mathrm{~cm}$
$\therefore \mathrm{PQ}=\mathrm{PM}-\mathrm{QM}=15-6=9 \mathrm{~cm}$

Question 3.

A chord of length 48 cm is at a distance of 10 cm from the centre of a circle. If another chord of length 20 cm is drawn in the same circle, find its distance from the centre of the circle.
Solution:
O is the centre of the circle
Length of chord $A B=48 \mathrm{~cm}$ and chord $C D=20 \mathrm{~cm}$

$\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$ are drawn
$\therefore \mathrm{AL}=\mathrm{LB}=\frac{48}{2}=24 \mathrm{~cm}$
and $\mathrm{CM}=\mathrm{MD}=\frac{20}{2}=10 \mathrm{~cm}$
$\mathrm{OL}=10 \mathrm{~cm}$
Now in right $\triangle \mathrm{AOL}$
$\mathrm{OA}^{2}=\mathrm{AL}^{2}+\mathrm{OL}^{2} \quad$ (Pythagoras Theorem)
$\Rightarrow \mathrm{OA}^{2}=(24)^{2}+(10)^{2}=576+100$
$=676=(26)^{2}$
$\therefore \mathrm{OA}=26 \mathrm{~cm}$
But OC $=O A \quad$ (radii of the same circle)
$\therefore \mathrm{OC}=26 \mathrm{~cm}$
Now in right $\triangle \mathrm{OCM}$
$\mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{CM}^{2}$
$(26)^{2}=\mathrm{OM}^{2}+(10)^{2}$
$676=\mathrm{OM}^{2}+100 \Rightarrow \mathrm{OM}^{2}=676-100$
$\Rightarrow \mathrm{OM}^{2}=576=(24)^{2}$
$\therefore \mathrm{OM}=24 \mathrm{~cm}$

Question 4.

(a) In the figure (i) given below, two circles with centres C, D intersect in points P, Q. If length of common chord is 6 cm and $C P=5 \mathrm{~cm}, \mathrm{DP}=4 \mathrm{~cm}$, calculate the distance CD correct to two decimal places.
(a) Two circles with centre C and D intersect each other at P and Q. PQ is the common chord $=6 \mathrm{~cm}$. The line joining the centres C and D bisects the chord PQ at M .
(b) In the figure (ii) given below, P is a point of intersection of two circles with centres C and D. If the st. line APB is parallel to $C D$, Prove that $A B=2 C D$.

$$
\therefore \quad \mathrm{PM}=\mathrm{MQ}=\frac{6}{2}=3 \mathrm{~cm}
$$

Now in right $\triangle \mathrm{CPM}$,

$$
\begin{aligned}
& \mathrm{CP}^{2}=\mathrm{CM}^{2}+\mathrm{PM}^{2} \\
\Rightarrow & (5)^{2}=\mathrm{CM}^{2}+(3)^{2} \Rightarrow 25=\mathrm{CM}^{2}+9 \\
\Rightarrow & \mathrm{CM}^{2}=25-9=16=(4)^{2}
\end{aligned}
$$

$\therefore \quad C M=4 \mathrm{~cm}$
and in right $\triangle \mathrm{PDM}$,

$$
\mathrm{PD}^{2}=\mathrm{PM}^{2}+\mathrm{MD}^{2}
$$

$\Rightarrow(4)^{2}=(3)^{2}+M D^{2} \Rightarrow 16=9+M D^{2}$
$\Rightarrow \mathrm{MD}^{2}=16-9=7$
$\therefore \mathrm{MD}=\sqrt{7}=2.65 \mathrm{~cm}$
$\therefore \quad C D=C M+M D=4+2 \cdot 65$

$$
=6.65 \mathrm{~cm}
$$

Solution:
(b) Given : Two circles with centre C and D intersect each other at P and Q . A straight line $A P B$ is drawn parallel to $C D$.
To Prove : $\mathrm{AB}=2 \mathrm{CD}$.
Construction : Draw CM and DN perpendicular to $A B$ from C and D.
Proof: $\because \mathrm{CM} \perp \mathrm{AP}$
$\therefore \quad \mathrm{AM}=\mathrm{MP}$ or $\mathrm{AP}=2 \mathrm{MP}$
and $\mathrm{DN} \perp \mathrm{PB}$

$\therefore \quad \mathrm{BN}=\mathrm{PN}$ or $\mathrm{PB}=2 \mathrm{PN}$
Adding

$$
\mathrm{AP}+\mathrm{PB}=2 \mathrm{MP}+2 \mathrm{PN}
$$

$\Rightarrow \quad \mathrm{AB}=2(\mathrm{MP}+\mathrm{PN})=2 \mathrm{MN}$
$\Rightarrow \quad \mathrm{AB}=2 \mathrm{CD}$.
Q.E.D.

Question 5.

(a) In the figure (i) given below, C and D are centres of two intersecting circles. The line APQB is perpendicular to the line of centres CD.Provethat:
(i) $A P=Q B$
(ii) $A Q=B P$.
(b) In the figure (ii) given below, two equal chords $A B$ and CD of a circle with centre O intersect at right angles at P. If M and N are mid-points of the chords $A B$ and CD respectively, Prove that NOMP is a square.

(i)

(ii)

Solution:
(a) Given : Two circles with centres C and D intersect each other. A line APQB is drawn perpendicular to CD at M .

To Prove : (i) $\mathrm{AP}=\mathrm{QB}$ (ii) $\mathrm{AQ}=\mathrm{BP}$.
Construction : Join AC and BC, DP and DQ.
Proof : (i) In right $\triangle \mathrm{ACM}$ and $\triangle \mathrm{BCM}$
Hyp. $\mathrm{AC}=\mathrm{BC} \quad$ (radii of same circle)
Side CM = CM (common)
$\therefore \triangle \mathrm{ACM} \cong \triangle \mathrm{BCM}$
(R.H.S. axiom of congruency)

为

(b) Given : Two chords AB and CD intersect each other at P at right angle in the circle. M and N are mid-points of the chord AB and CD.

To Prove : NOMP is a square.
Proof : $\because \mathrm{M}$ and N are the mid-points of AB and CD respectively.
$\therefore \mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$
and $\mathrm{OM}=\mathrm{ON}$
(\because Equal chords are at equal distance from the centre)
$\because \quad \mathrm{AB} \perp \mathrm{CD}$
$\therefore \mathrm{OM} \perp \mathrm{ON}$
Hence NOMP is a square.

Question 6.
In the given figure, $A D$ is diameter of a circle. If the chord $A B$ and $A C$ are equidistant from its centre O, prove that $A D$ bisects $\angle B A C$ and $\angle B D C$.
Solution:

Given : AB and AC are equidistant from its centre O
So, $\mathrm{AB}=\mathrm{AC}$
In $\triangle A B D$ and $\triangle A C D$
$\mathrm{AB}=\mathrm{AC}{ }^{\text {. }}$ (given)
$\angle \mathrm{B}=\angle \mathrm{C} \quad\left(\because\right.$ Angle in a semicircle is $\left.90^{\circ}\right)$
$\mathrm{AD}=\mathrm{AD}$
(common)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ (SSS rule of congruency)
\therefore AD bisects $\angle \mathrm{BAC}$ and $\angle \mathrm{BDC}$

