Pythagoras Theorem

Question 1.
Lengths of sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse:
(i) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(ii) $13 \mathrm{~cm}, .12 \mathrm{~cm}, 5 \mathrm{~cm}$
(iii) $1.4 \mathrm{~cm}, 4.8 \mathrm{~cm}, 5 \mathrm{~cm}$

Solution:
We use Pythagoras Theorem's converse:
(i) Sides of a triangle are $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
$3^{2}+6^{2}=9+36=45$
and $8^{2}=64$
$\because 45 \neq 64$
\therefore It is not a right triangle.
(ii) Sides are $13 \mathrm{~cm}, 12 \mathrm{~cm}$ and 5 cm
$12^{2}+5^{2}=144+25=169$
and $13^{2}=169$
$\because 12^{2}+5^{2}=13^{2}$
\therefore It is a right angled triangle.
(iii) $1.4 \mathrm{~cm}, 4.8 \mathrm{~cm}, 5 \mathrm{~cm}$
and $(1.4)^{2}+(4.8)^{2}=1.96+23.04=25$
and $(5)^{2}=25$
$\because(1.4)^{2}+(4.8)^{2}=5^{2}$
\therefore It is a right angled triangle

Question 2.

Foot of a 10 m long ladder leaning against a vertical well is 6 m away from the base of the wail. Find the height of the point on the wall where the top of the ladder reaches.
Solution:

Let $A B$ be wall and $A C$ be the ladder
Ladder AC= $=10 \mathrm{~m}$
$\mathrm{BC}=6 \mathrm{~m}$
Let height of wall $\mathrm{AB}=h$

By Pythagoras Theorem,
$\mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2} \Rightarrow 10^{2}=6^{2}+h^{2}$
$\Rightarrow 100=36+h^{2} \Rightarrow h^{2}=100-36=64=(8)^{2}$
$\therefore h=8$
\therefore Height of wall $=8 \mathrm{~cm}$

Question 3.

A guy attached a wire 24 m long to a vertical pole of height 18 m and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taught?
Solution:

Let $A B$ be the pole and $A C$ be the wire attached
$\mathrm{AB}=18 \mathrm{~m}$ and $\mathrm{AC}=24 \mathrm{~m}$

In right $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2} \quad \text { (Pythagoras Theorem) } \\
24= & \mathrm{BC}^{2}+18^{2} \Rightarrow \mathrm{BC}^{2}=24^{2}-18^{2} \\
\Rightarrow & \mathrm{BC}=\sqrt{576-324}=\sqrt{252} \\
& =\sqrt{4 \times 9 \times 7}=2 \times 3 \sqrt{7}=6 \sqrt{7} \mathrm{~m}
\end{aligned}
$$

Question 4.
Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.

Solution:
Two poles AB and CD are 12 m apart
$A B=6 \mathrm{~m}, \mathrm{CD}=11 \mathrm{~m}$
From A, draw $A E \| B D$
Then $\mathrm{AE}=\mathrm{BD}=12 \mathrm{~m}$

$\mathrm{CE}=\mathrm{CD}-\mathrm{ED}=\mathrm{CD}-\mathrm{AB}$
$=11-6=5 \mathrm{~m}$
Now in right $\triangle \mathrm{ACE}$
$\mathrm{AC}^{2}=\mathrm{AE}^{2}+\mathrm{CE}^{2}$
(Pythagoras Theorem)
$=12^{2}+5^{2}=144+25=169=(13)^{2}$
$\therefore \mathrm{AC}=13 \mathrm{~m}$
\therefore Distance between their tops $=13 \mathrm{~m}$

Question 5.
In a right-angled triangle, if hypotenuse is $\mathbf{2 0} \mathbf{~ c m}$ and the ratio of the other two sides is $4: 3$, find the sides.
Solution:

In the right angled triangle hypotenuse $=20 \mathrm{~cm}$
ratio of other two sides $=4: 3$
Let First side $=4 x$
then Second side $=3 x$
By Pythagoras theorem,
$(\text { Hypotenuse })^{2}=(\text { First side })^{2}+($ Second side ${ }^{2}$
$\therefore(20)^{2}=(4 x)^{2}+(3 x)^{2}$
$\Rightarrow(20)^{2}=16 x^{2}+9 x^{2} \Rightarrow 400=25 x^{2}$
$\Rightarrow x^{2}=\frac{400}{25} \Rightarrow x^{2}=16 \Rightarrow x=\sqrt{16}=4$
\therefore First side $=4 x=4 \times 4 \mathrm{~cm}=16 \mathrm{~cm}$
Second side $=3 x=3 \times 4 \mathrm{~cm}=12 \mathrm{~cm}$
Hence, other two sides of right angled triangle $=16 \mathrm{~cm}$ and 12 cm .

Question 6.

If the sides of a triangle are in the ratio 3:4:5, prove that it is right-angled triangle. Solution:
Let three sides of given triangle $A B C$ is $A B$,
BC and $\mathrm{CA}=3: 4: 5$
Let $\mathrm{AB}=3 x, \mathrm{BC}=4 x$ and $\mathrm{CA}=5 x$
Here $(A B)^{2}+(B C)^{2}=(3 x)^{2}+(4 x)^{2}$
$=9 x^{2}+16 x^{2}=25 x^{2}$
Also, (CA $)^{2}=(5 x)^{2}=25 x^{2}$
i.e. $(A B)^{2}+(B C)^{2}=(C A)^{2}$

Hence, $A B C$ is right angled triangle.

Question 7.

For going to a city B from city A, there is route via city C such that $A C \perp C B, A C=$ $2 x \mathrm{~km}$ and $C B=2(x+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of highway.
Solution:

In right $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$
$(2 x)^{2}+[2(x+7)]^{2}=26^{2}$

$\Rightarrow 4 x^{2}+4\left(x^{2}+14 x+49\right)=676$.
$\Rightarrow 4 x^{2}+4 x^{2}+56 x+196-676=0$
$\Rightarrow 8 x^{2}+56 x-480=0$
$\Rightarrow x^{2}+7 x-60=0 \quad$ (Dividing by 8)
$\Rightarrow x^{2}+12 x-5 x-60=0$
$\Rightarrow x(x+12)-5(x+12)=0$
$\Rightarrow(x+12)(x-5)=0$
Either $x+12=0$, then $x=-12$ which is not
possible being negative
or $x-5=0$, then $x=5$
Now distance between $\mathrm{AC}=2 x$
$=2 \times 5=10 \mathrm{~km}$
and between $\mathrm{BC}=2(x+7)=2(5+7)$
$=2 \times 12=24$
\therefore Distance from A to C and B to $\mathrm{C}=10+24=$ 34 km
\therefore Distance saved $=34-26=8 \mathrm{~km}$

Question 8.

The hypotenuse of right triangle is 6 m more than twice the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle.

Solution:
Let the shortest side of right angled triangle
$=x \mathrm{~m}$
Hypotenuse $=(2 x+6) \mathrm{m}$.
Third side $=[(2 x+6)-2] \mathrm{m}$
By Pythagoras theorem,
$(2 x+6)^{2}=x^{2}+[(2 x+6)-2]^{2}$
$\Rightarrow \quad 4 x^{2}+36+24 x=x^{2}+(2 x+4)^{2}$
$\Rightarrow \quad 4 x^{2}+36+24 x=x^{2}+4 x^{2}+16+16 x$
$\Rightarrow \quad 36+24 x=x^{2}+16+16 x$
$\Rightarrow \quad 0=x^{2}+16+16 x-36-24 x$
$\Rightarrow \quad 0=x^{2}-8 x-20 \Rightarrow x^{2}-8 x-20=0$
$\Rightarrow \quad x-10 x+2 x-20=0$
$\Rightarrow \quad x(x-10)+2(x-10)=0$
$\Rightarrow \quad(x+2)(x-10)=0$
Either $\quad x+2=0$ or $x-10=0$
$x=-2$ (Which is not possible)
or $x=10$
Hence, shortest $=x=10 \mathrm{~m}$
Hypotenuse $=(2 x+6) \mathrm{m}=(2 \times 10+6)=26 \mathrm{~m}$
Third side $=(2 x+6)-m=26 m-2 m=24 m$

Question 9.
$A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$. Solution:
$\triangle \mathrm{ABC}$ is an isosceles right triangle, right angle at $\mathrm{C}, \mathrm{AC}=\mathrm{BC}$

To prove : $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
Proof: In right $\triangle A B C$
$\angle C=90^{\circ}$
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2} \quad$ (Pythagoras Theorem)
$=\mathrm{AC}^{2}+\mathrm{AC}^{2}$
$(\because B C=A C)$
$=2 \mathrm{AC}^{2}$

Question 10.
In a triangle $A B C, A D$ is perpendicular to $B C$. Prove that $A B^{2}+C D^{2}=A C^{2}+B D^{2}$.

Solution:
In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}$

To prove: $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Proof: In $\triangle A B C, A D \perp B C$
$\therefore \triangle A B D$ and $\triangle A C D$ are right triangles
In right $\triangle A D B$,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \quad$ (Pythagoras Theorem)
$\Rightarrow \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}$
Similarly in right $\triangle A D C$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{CD}^{2}$
From (i) and (ii),
$\mathrm{AB}^{2}-\mathrm{BD}^{2}=\mathrm{AC}^{2}-\mathrm{CD}^{2}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$

Question 11.
In $\triangle P Q R, P D \perp Q R$, such that D lies on $Q R$. If $P Q=a, P R=b, Q D=c$ and $D R=d$, prove that $(a+b)(a-b)=(c+d)(c-d)$.
Solution:

In $\triangle \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QK}$
$\mathrm{PQ}=a, \mathrm{PR} \doteq b, \mathrm{QD}=c, \mathrm{DR} \stackrel{*}{=} d$
To prove : $(a+b)(a-b)=(c+d)(c-d)$
Proof: In $\triangle P Q R, P D \perp Q R$
Now in right $\triangle P Q D$
$\mathrm{PQ}^{2}=\mathrm{PD}^{2}+\mathrm{QD}^{2} \quad$ (Pythagoras Theorem)
$\Rightarrow \mathrm{PD}^{2}=\mathrm{PQ}^{2}-\mathrm{QD}^{2}=a^{2}-c^{2}$
Similarly in right $\triangle P D R$
$\mathrm{PR}^{2}=\mathrm{PD}^{2}+\mathrm{DR}^{2}$

$\Rightarrow \mathrm{PD}^{2}=\mathrm{PR}^{2}-\mathrm{DR}^{2}$
$b^{2}-d^{2}$
From (i) and (ii),
$a^{2}-c^{2}=b^{2}-d^{2}$
$\Rightarrow a^{2}-b^{2}=c^{2}-d^{2}$
$\Rightarrow(a+b)(a-b)=(c+d)(c-d)$

Question 12.
$A B C$ is an isosceles triangle with $A B=A C=12 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$. Find the altitude on $B C$ and Hence, calculate its area.
Solution:

To find, Altitude on $B C$ i.e. value of $A D$
In isosceles triangle perpendicular from vertex bisects the base

$\therefore \mathrm{BD}=\mathrm{DC}$
$\therefore \mathrm{BD}=\frac{1}{2} \times 8 \mathrm{~cm}=4 \mathrm{~cm}$.
In right angled triangle ABD
By Pythagoras theorem

$$
\begin{aligned}
& \mathrm{AD}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2} \Rightarrow \mathrm{AD}^{2}+(4)^{2}=(12)^{2} \\
& \mathrm{AD}^{2}+16=144 \Rightarrow \mathrm{AD}^{2}=128 \\
& \mathrm{AD}=\sqrt{128}=\sqrt{64 \times 2}=8 \sqrt{2}
\end{aligned}
$$

\therefore Altitude on $B C=8 \sqrt{2}$. Ans.
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times$ base \times Altitude
$=\frac{1}{2} \times 8 \times 8 \sqrt{2} \mathrm{~cm}^{2}=4 \times 8 \sqrt{2} \mathrm{~cm}^{2}$
$=32 \sqrt{2} \mathrm{~cm}^{2}$.

Question 13.
Find the area and the perimeter of a square whose diagonal is 10 cm long.

Solution:
Let ABCD be a square whose diagonal $\mathrm{AC}=10 \mathrm{~cm}$

Let length of sides of squared $=x \mathrm{~cm}$
In $\triangle \mathrm{ABC}$
By Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\Rightarrow \quad(10)^{2}=x^{2}+x^{2} \Rightarrow 2 x^{2}=100$
$\Rightarrow x^{2}=\frac{100}{2}$
$\Rightarrow \quad x^{2}=50 \Rightarrow x=\sqrt{50}$
$\Rightarrow x=\sqrt{25 \times 2} \Rightarrow x=5 \sqrt{2} \mathrm{~cm}$
Area of square $=$ side \times side
$=5 \sqrt{2} \times 5 \sqrt{2} \mathrm{~cm}^{2}=25 \times 2 \mathrm{~cm}^{2}$
Perimeter of square $=4 \times$ side
$=4 \times 5 \sqrt{2} \mathrm{~cm}=20 \sqrt{2} \mathrm{~cm}$ Ans.

Question 14.

(a) In fig. (i) given below, $A B C D$ is a quadrilateral in which $A D=13 \mathrm{~cm}, \mathrm{DC}=12$ $\mathrm{cm}, B C=3 \mathrm{~cm}, \angle A B D=\angle B C D=90^{\circ}$. Calculate the length of $A B$.
(b) In fig. (ii) given below, $A B C D$ is a quadrilateral in which $A B=A D, \angle A=90^{\circ}$ $=\angle C, B C=8 \mathrm{~cm}$ and $C D=6 \mathrm{~cm}$. Find $A B$ and calculate the area of $\triangle A B D$.

(i)

(ii)

Solution:
(a) Given. ABCD is a quadrilateral in which $\mathrm{AD}=13 \mathrm{~cm}, \mathrm{DC}=12 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}$ and $\angle \mathrm{ABD}=\angle \mathrm{BCD}=90^{\circ}$
To calculate : the length of $A B$
Sol. In right angled triangle $B C D$
By Pythagoras theorem,
$\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{DC}^{2}$
$\Rightarrow \quad \mathrm{BD}^{2}=(3)^{2}+(12)^{2}$
$\Rightarrow \quad \mathrm{BD}^{2}=9+144$
$\Rightarrow \mathrm{BD}^{2}=153$
Now, in right angled $\triangle \mathrm{ABD}$,
By Pythagoras theorem,

$$
\begin{aligned}
& \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BD}^{2} \\
& =(13)^{2}-153 \\
& \left(\because \mathrm{BD}^{2}=153\right) \\
& =169-153=16 \Rightarrow \mathrm{AB}=\sqrt{16}=4
\end{aligned}
$$

Hence, length of $A B=4 \mathrm{~cm}$.
(b) In right angled triangle BCD ,

By Pythagoras theorem,

$$
\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{CD}^{2}=(8)^{2}+(6)^{2}=64+36=100
$$

$\Rightarrow \quad \mathrm{BD}=\sqrt{100}=10$
$\therefore \mathrm{BD}=10 \mathrm{~cm}$.
In right angled triangle $A B D$,
$\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{AD}^{2}$
$\Rightarrow \quad \mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{AB}^{2} \quad(\because \mathrm{AB}=\mathrm{AD}$ (given))
$\Rightarrow \quad(10)^{2}=2 \mathrm{AB}^{2}$
$\Rightarrow \quad 2 \mathrm{AB}^{2}=100$
$\Rightarrow \mathrm{AB}^{2}=\frac{100}{2}=50$
$\Rightarrow \quad \mathrm{AB}=\sqrt{50}$
$=\sqrt{25 \times 2}=5 \sqrt{2}$
$\therefore \mathrm{AB}=5 \sqrt{2} \mathrm{~cm}$

Area of $\triangle A B D=\frac{1}{2} \times A B \times A D$
$=\frac{1}{2} \times 5 \sqrt{2} \times 5 \sqrt{2} \mathrm{~cm}^{2}$
$(\because \mathrm{AB}=\mathrm{AD})$
$=\frac{25 \times 2}{2} \mathrm{~cm}^{2}=25 \mathrm{~cm}^{2}$

Question 15.

(a) In figure (i) given below, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AC}=13 \mathrm{~cm}, \mathrm{CE}=10 \mathrm{~cm}$ and $\mathrm{DE}=\mathbf{6}$ cm . Calculate the length of BD.
(b) In figure (ii) given below, $\angle P S R=90^{\circ}, P Q=10 \mathrm{~cm}, \mathrm{QS}=6 \mathrm{~cm}$ and $\mathrm{RQ}=9 \mathrm{~cm}$. Calculate the length of PR.
(c) In figure (iii) given below, $\angle D=90^{\circ}, A B=16 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $C A=6 \mathrm{~cm}$. Find CD.
(i)

(iii)

Solution:
(a) Here $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AC}=13 \mathrm{~cm}$, $C E=10 \mathrm{~cm}$ and $\mathrm{DE}=6 \mathrm{~cm}$.
To calculate the length of BD .
Sol. In right angled $\triangle \mathrm{ABC}$
By Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\Rightarrow \quad(13)^{2}=(12)^{2}+\mathrm{BC}^{2}$
$\Rightarrow \quad \mathrm{BC}^{2}=(13)^{2}-(12)^{2}$
$\Rightarrow \quad \mathrm{BC}^{2}=169-144$
$\Rightarrow \quad \mathrm{BC}^{2}=25$
$\Rightarrow \quad \mathrm{BC}=\sqrt{25}=5$
$\therefore \quad \mathrm{BC}=5 \mathrm{~cm}$
In right angled $\triangle C E D$
By Pythagoras theorem,
$\mathrm{CE}^{2}=\mathrm{CD}^{2}+\mathrm{DE}^{2}$
$\Rightarrow \quad(10)^{2}=\dot{C} D^{2}+(6)^{2} \Rightarrow \quad \stackrel{ }{C} D^{2}=100-36$
$\Rightarrow \quad \mathrm{CD}^{2}=64 \Rightarrow \mathrm{CD}=\sqrt{64} \Rightarrow \mathrm{CD}=8$
$\therefore \quad C D=8 \mathrm{~cm}$.
Hence, length of $B D=B C+C D$
$=5 \mathrm{~cm}+8 \mathrm{~cm}$
[Putting from (1) and (2)]
$=13 \mathrm{~cm}$
(b) Here $\angle \mathrm{PSR}=90^{\circ}$
$P Q=10 \mathrm{~cm}, \mathrm{QS}=6 \mathrm{~cm}$ and $\mathrm{RQ}=9 \mathrm{~cm}$
To calculate the length of PR
Sol. In right angled $\triangle \mathrm{PQS}$.
By Pythagoras theorem,
$\mathrm{PQ}^{2}=\mathrm{PS}^{2}+\mathrm{QS}^{2}$
$\Rightarrow(10)^{2}=\mathrm{PS}^{2}+(6)^{2} \Rightarrow(10)^{2}-(6)^{2}=\mathrm{PS}^{2}$
$\Rightarrow 100-36=\mathrm{PS}^{2} \Rightarrow \mathrm{PS}^{2}=64 \Rightarrow \mathrm{PS}=\sqrt{64}=8$
$\therefore \quad P S=8 \mathrm{~cm}$.
Now, in right angled \triangle PSR
By Pythagoras theorem,
$\mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{RS}^{2}$
$P R^{2}=(8)^{2}+(15)^{2}$

$$
(R S=R Q+
$$

$\mathrm{PR}^{2}=64+225=(9+6) \mathrm{cm}=15 \mathrm{~cm}$
$P R^{2}=289$
$\mathrm{PR}=\sqrt{289}=17$
$\therefore \quad \mathrm{PR}=17 \mathrm{~cm}$.
(c) Here $\angle \mathrm{D}=90^{\circ}$
$\mathrm{AB}=16 \mathrm{~cm}, \quad \mathrm{BC}=12 \mathrm{~cm} \quad$ and $\mathrm{CA}=6 \mathrm{~cm}$
To find CD
Sol. Let the value of $\mathrm{CD}=x \mathrm{~cm}$,
By Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow \quad(16)^{2}=\mathrm{AD}^{2}+(\mathrm{BC}+\mathrm{CD})^{2}$
$\Rightarrow \quad(16)^{2}=\mathrm{AD}^{2}+(12+x)^{2}$
$\Rightarrow \mathrm{AD}^{2}=(16)^{2}-(12+x)^{2}$
Now, in right angle $\triangle A C D$
By Pythagoras theorem,

$$
\begin{aligned}
& A C^{2}= A D^{2}+C D^{2} \\
& \Rightarrow \quad(6)^{2}=\left[(16)^{2}-(12+x)^{2}\right]+x^{2} \\
&(\because \text { From (1) putting the value of } \mathrm{AD}) \\
& \Rightarrow \quad 36=256-\left(144+x^{2}+24 x\right)+x^{2} \\
& \Rightarrow 36=256-144-x^{2}-24 x+x^{2} \\
& \Rightarrow \quad 36=256-144-24 x \\
& \Rightarrow \quad 24 x=256-144-36 \Rightarrow 24 x=76 \\
& \Rightarrow \quad x=\frac{76}{24}=\frac{19}{6}=3 \frac{1}{6}
\end{aligned}
$$

Hence, $C D=3 \frac{1}{6} \mathrm{~cm}$.

Question 16.

(a) In figure (i) given below, $\mathrm{BC}=5 \mathrm{~cm}$,
$\angle B=90^{\circ}, A B=5 A E, C D=2 A E$ and $A C=E D$. Calculate the lengths of $E A, C D, A B$ and $A C$.
(b) In the figure (ii) given below, $A B C$ is a right triangle right angled at C. If D is mid-point of $B C$, prove that $A B 2=4 A D^{2}-3 A C^{2}$.

Solution:
(a) Here $\mathrm{BC}=5 \mathrm{~cm}, \angle \mathrm{~B}=90^{\circ}, \mathrm{AB}=5 \mathrm{AE}$, $\mathrm{CD}=2 \mathrm{AE}, \mathrm{AC}=\mathrm{ED}$
To calculate the lengths of $\mathrm{EA}, \mathrm{CD}, \mathrm{AB}$ and AC
In right angled $\triangle A B C$
By Pythagoras Theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Also, in right angled $\triangle \mathrm{BED}$
ED^{2}, in right angled $\triangle \mathrm{BED}$
$\mathrm{ED}^{2}=\mathrm{BE}^{2}+\mathrm{BD}^{2}$
But $\mathrm{AC}=\mathrm{ED} \Rightarrow \mathrm{AC}^{2}=\mathrm{ED}^{2}$
From (i), (ii) and (iii),
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{BE}^{2}+\mathrm{BD}^{2}$
$\Rightarrow(5 \mathrm{EA})^{2}+(5)^{2}=(4 \mathrm{EA})^{2}+(\mathrm{BE}+\mathrm{CD})^{2}$

$$
(\because \mathrm{BE}=\mathrm{AB}-\mathrm{EA}=5 \mathrm{EA}-\mathrm{EA}=4 \mathrm{EA})
$$

$\Rightarrow 25 \mathrm{EA}^{2}+25=16 \mathrm{EA}^{2}+(5+2 \mathrm{EA})^{2}$ $(\because C D=2 E A)$
$\Rightarrow 25 \mathrm{EA}^{2}+25-16 \mathrm{EA}^{2}=25+4 \mathrm{EA}^{2}+20 \mathrm{EA}$
$\Rightarrow 25 x^{2}+25-16 x^{2}=25+4 x^{2}+30 x$
(Let $\mathrm{EA}=x \mathrm{~cm}$)
$\Rightarrow 9 x^{2}-4 x^{2}=20 x \Rightarrow 5 x^{2}=20 x$
$\Rightarrow x=4 \mathrm{~cm}$
$(\because x \neq 0)$
$\therefore \mathrm{EA}=4 \mathrm{~cm}$
$C D=2 \mathrm{AE}=2 \times 4 \mathrm{~cm}=8 \mathrm{~cm}$
$\mathrm{AB}=5 \mathrm{AE}=5 \times 4 \mathrm{~cm}=20 \mathrm{~cm}$
In ight angled $\triangle \mathrm{ABC}$,
By Pythagoras Theorem,
$\mathrm{AC}^{2}-\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\Rightarrow \mathrm{AC}^{2}=(20)^{2}+(5)^{2}=400+25=425$
$\Rightarrow A C=\sqrt{425}=\sqrt{25 \times 17}=5 \sqrt{17}$
Hence, $\mathrm{AC}=5 \sqrt{17}$ Ans.
(b) In right $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$
D is mid-piont of $B C$
To prove : $\mathrm{AB}^{2}=4 \mathrm{AD}^{2}-3 \mathrm{AC}^{2}$
Proof: In right $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
(Pythagoras Theorem)
But in right $\triangle \mathrm{ADC}$

$$
\begin{align*}
\mathrm{AD}^{2} & =\mathrm{AC}^{2}+\mathrm{DC}^{2} \\
\Rightarrow \mathrm{AC}^{2} & =\mathrm{AD}^{2}-\mathrm{DC}^{2} \tag{ii}
\end{align*}
$$

From (i) and (ii),

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AD}^{2}-\left(\frac{\mathrm{BC}}{2}\right)^{2} \\
& \text { (} \because \mathrm{D} \text { is mid-point of } \mathrm{BC} \text {) } \\
& \mathrm{AC}^{2}=\mathrm{AD}^{2}-\frac{\mathrm{BC}^{2}}{4} \\
& 4 \mathrm{AC}^{2}=4 \mathrm{AD}^{2}-\mathrm{BC}^{2} \\
& \mathrm{AC}^{2}+3 \mathrm{AC}^{2}=4 \mathrm{AD}^{2}-\mathrm{BC}^{2} \\
& A C^{2}+B C^{2}=4 A D^{2}-3 A C^{2} \\
& \text { But } \mathrm{BC}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2} \\
& \text { [From (i)] } \\
& \therefore A B^{2}=4 A D^{2}-3 A C^{2}
\end{aligned}
$$

Question 17.
In $\triangle A B C, A B=A C=x, B C=10 \mathrm{~cm}$ and the area of $\triangle A B C$ is $60 \mathrm{~cm}^{2}$. Find x. Solution:

Tiven. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=x, \mathrm{BC}=10$ cm . and area of $\triangle A B C=60 \mathrm{~cm}^{2}$
Required. Value of x.
Construction. Draw $\mathrm{AD} \perp \mathrm{BC}$

Sol. In isosceles triangle ABC
$\mathrm{BD}=\frac{1}{2} \times \mathrm{BC}$
$\Rightarrow \quad \mathrm{BD}=\frac{1}{2} \times 10 \mathrm{~cm}=5 \mathrm{~cm}$
In right angled $A B D$
By Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$
$x^{2}=(5)^{2}+\mathrm{AD}^{2}$
$\Rightarrow \mathrm{AD}^{2}=x^{2}-25 \Rightarrow \mathrm{AD}=\sqrt{x^{2}-25}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times$ base \times height
$\Rightarrow \quad 60=\frac{1}{2} \times 10 \times \sqrt{x^{2}-25}$
$\Rightarrow \frac{60 \times 2}{10}=\sqrt{x^{2}-25} \Rightarrow 12=\sqrt{x^{2}-25}$
Squaring both sides, we get

$$
\begin{aligned}
& (12)^{2}=\left(\sqrt{x^{2}-25}\right)^{2} \\
& \Rightarrow \quad 144=x^{2}-25 \Rightarrow 144+25=x^{2} \\
& \Rightarrow \quad x^{2}=169 \Rightarrow x=\sqrt{169}=13
\end{aligned}
$$

\therefore Hence, $x=13 \mathrm{~cm}$

Question 18.

In a rhombus, If diagonals are 30 cm and 40 cm , find its perimeter.

Solution:
Given. $\mathrm{A} \overline{\mathrm{C}}=30 \mathrm{~cm}$ and $\mathrm{BD}=40 \mathrm{~cm}$ where
AC and BD are diagonals of rhombus ABCD .
Required. Side of rhombus
Sol. We know that in rhombus diagonals are bisect each other also perpendicular to each other.
$\therefore \mathrm{AO}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 30 \mathrm{~cm}=15 \mathrm{~cm}$
and $\mathrm{BO}=\frac{1}{2} \mathrm{BD}=\frac{1}{2} \times 40 \mathrm{~cm}=20 \mathrm{~cm}$

In right angled $\triangle \mathrm{AOB}$
By Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}$
$=(15)^{2}+(20)^{2} \Rightarrow 225+400=625$
$\mathrm{AB}=\sqrt{625}=25$
Side of rhombus $(a)=25 \mathrm{~cm}$
Perimeter of rhombus $=4 a=4 \times 25=100 \mathrm{~cm}$

Question 19.

(a) In figure (i) given below, $A B|\mid D C, B C=A D=13 \mathrm{~cm} . A B=22 \mathrm{~cm}$ and $D C=$ 12 cm . Calculate the height of the trapezium $A B C D$.
(b) In figure (ii) given below, $A B\left|\mid D C, \angle A=90^{\circ}, D C=7 \mathrm{~cm}, A B=17 \mathrm{~cm}\right.$ and $A C=$ 25 cm . Calculate BC.
(c) In figure (iii) given below, $A B C D$ is a square of side 7 cm . if $A E=F C=C G=H A=3 \mathrm{~cm}$,
(i) prove that EFGH is a rectangle.
(ii) find the area and perimeter of EFGH.

Solution:

(iii)
(a) Given. $\mathrm{AB} \| \mathrm{DC}, \quad \mathrm{BC}=\mathrm{AD}=13$
$\mathrm{cm}, \quad \mathrm{AB}=22 \mathrm{~cm}$ and $\mathrm{DC}=12 \mathrm{~cm}$
Required. Height of trapezium ABCD .
Sol. Here $\mathrm{CD}=\mathrm{MN}=12 \mathrm{~cm}$.
Also, $\mathbf{A M}=\mathbf{B N}$
$\therefore \quad \mathrm{AB}=\mathrm{AM}+\mathrm{MN}+\mathrm{BN}$
$\Rightarrow \quad 22=\mathrm{AM}+12+\mathrm{AM}$
$\Rightarrow \quad 22-12=2 \mathrm{AM}$
$\Rightarrow \quad 10=2 \mathrm{AM}$
$\Rightarrow \quad \mathrm{AM}=\frac{10}{2}=5$
$\therefore \quad \mathrm{AM}=5 \mathrm{~cm}$.
In right angled $\triangle \mathrm{AMD}$
$\mathrm{AD}^{2}=\mathrm{AM}^{2}+\mathrm{DM}^{2}$
$\Rightarrow \quad(13)^{2}=(5)^{2}+\mathrm{DM}^{2} \Rightarrow \mathrm{DM}^{2}=(13)^{2}-(5)^{2}$
$\Rightarrow \quad \mathrm{DM}^{2}=169 \div 25 \quad \Rightarrow \quad \mathrm{DM}^{2}=144$
$\Rightarrow \mathrm{DM}=\sqrt{144}=12 \mathrm{~cm}$.
Hence, height of trapezium $=12 \mathrm{~cm}$.
(b) Given. $\mathrm{AB} \| \mathrm{DC}, \angle \mathrm{A}=90^{\circ}, \mathrm{DC}=7 \mathrm{~cm}$, $\mathrm{AB}=17 \mathrm{~cm}$ and $\mathrm{AC}=25 \mathrm{~cm}$.
Required. $B C$

$$
\begin{aligned}
& \text { In right angled triangle } \\
& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \text { (By Pythagoras theorem) } \\
& \Rightarrow \quad(25)^{2}=\mathrm{AD}^{2}+(7)^{2} \\
& \Rightarrow \mathrm{AD}^{2}=625-49 \\
& \Rightarrow \mathrm{AD}^{2}=576 \\
& \Rightarrow \mathrm{AD}=\sqrt{576}=24 \\
& \therefore \quad A D=24 \mathrm{~cm} \text {. } \\
& \text { Also, } \mathrm{AD}=\mathrm{MC}=24 \mathrm{~cm} \quad(\because \mathrm{AB} \| \mathrm{DC}) \\
& \text { Also } \mathrm{AM}=\mathrm{DC}=7 \mathrm{~cm} \\
& \text { i.e. } \quad \mathrm{AM}=7 \mathrm{~cm} \\
& \therefore \quad \mathrm{BM}=\mathrm{AB}-\mathrm{AM}=10 \mathrm{~cm} \\
& \text { In right angled } \triangle \mathrm{BMC} \\
& \mathrm{BC}^{2}=\mathrm{MC}^{2}+\mathrm{BM}^{2} \\
& =(24)^{2}+(10)^{2}
\end{aligned}
$$

$=576+100=676=(26)^{2}$
$\Rightarrow \quad B C=26$
$\therefore \quad \mathrm{BC}=26 \mathrm{~cm}$ Ans.
(c) Given. ABCD is a square of side $=7 \mathrm{~cm}$.
$\mathrm{AE}=\mathrm{FC}=\mathrm{CG}=\mathrm{HA}=3 \mathrm{~cm}$.
To prove. (i) EFGH is a rectangle.
(ii) To find the area and perimeter of EFGH .

Proof. $\mathrm{BE}=\mathrm{BF}=\mathrm{DG}=\mathrm{DH}=7-3=4 \mathrm{~cm}$
In right angled $\triangle \mathrm{AEH}$
$\mathrm{HE}^{2}=\mathrm{HA}^{2}+\mathrm{AE}^{2}$
$=(3)^{2}+(3)^{2}$
$=9+9=18$
$\Rightarrow \quad \mathrm{HE}=\sqrt{18}=3 \sqrt{2} \mathrm{~cm}$.
$\therefore \mathrm{HE}=\mathrm{GF}=3 \sqrt{2} \mathrm{~cm}$.
Again In right angled $\triangle \mathrm{EBF}$
$\mathrm{EF}^{2}=\mathrm{EB}^{2}+\mathrm{BF}^{2}$
$=(4)^{2}+(4)^{2}$
$=16+16=32$
$\mathrm{EF}=\sqrt{32}=\sqrt{16 \times 2}=4 \sqrt{2} \mathrm{~cm}$.
$\therefore \mathrm{EF}=\mathrm{HG}=4 \sqrt{2} \mathrm{~cm}$.
Join EG
In $\triangle E F G$
$\mathrm{EF}^{2}+\mathrm{GF}^{2}=(3 \sqrt{2})^{2}+(4 \sqrt{2})^{2}=18+32=50$
Also, $\mathrm{EH}^{2}+\mathrm{HG}^{2}=(3 \sqrt{2})^{2}+(4 \sqrt{2})^{2}=18+32=50$
$\therefore \mathrm{EF}^{2}+\mathrm{GF}^{2}=\mathrm{EH}^{2}+\mathrm{HG}^{2}$
i.e $\mathrm{EG}^{2}=\mathrm{HF}^{2}$
i.e $E G=H F$
i.e Diagonals of quadrilateral are equal.
$\therefore \quad \mathrm{EFGH}$ is a rectangle.
Area of rectangle $\mathrm{EFGH}=\mathrm{HE} \times \mathrm{EF}$
$=3 \sqrt{2} \times 4 \sqrt{2} \mathrm{~cm}^{2}=24 \mathrm{~cm}^{2}$ Ans.
Perimeter of rectangle $\mathrm{EFGH}=2(\mathrm{EF}+\mathrm{HE})$
$=2(4 \sqrt{2}+3 \sqrt{2})$
$=2 \times 7 \sqrt{2} \mathrm{~cm}$
$=14 \sqrt{2} \mathrm{~cm}$

Question 20.
$A D$ is perpendicular to the side $B C$ of an equilateral $\triangle A B C$. Prove that $4 A D^{2}=$ $3 A B^{2}$.
Solution:
Given. ABC is an equilateral triangle and
$\mathrm{AD} \perp \mathrm{BC}$
To prove. $4 \mathrm{AD}^{2}=3 \mathrm{AB}^{2}$

Proof. Since $A B C$ is an equilateral triangle
$\therefore \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
In right angled triangle ABD
$\mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$
(By Pythagoras theorem)
$\Rightarrow \quad \mathrm{AB}^{2}=\left(\frac{\mathrm{BC}}{2}\right)^{2}+1 \mathrm{AD}^{2}$
$\left[\because \mathrm{BD}=\frac{\mathrm{BC}}{2}\right]$
$\Rightarrow \quad \mathrm{AB}^{2}=\frac{(\mathrm{AB})^{2}}{4}+\mathrm{AD}^{2}$
$A B=B C]$
$\Rightarrow A B^{2}-\frac{\mathrm{AB}^{2}}{4}=\mathrm{AD}^{2}$
$\Rightarrow \quad \frac{4 \mathrm{AB}^{2}-\mathrm{AB}^{2}}{4}=\mathrm{AD}^{2}$
$\Rightarrow \frac{3 \mathrm{AB}^{2}}{4}=\mathrm{AD}^{2}$
$\Rightarrow 3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}$
$\Rightarrow 4 \mathrm{AD}^{2}=3 \mathrm{AB}^{2}$
Hence, the result is proved.

Question 21.
In figure (i) given below, D and E are mid-points of the sides BC and CA respectively of a $\triangle A B C$, right angled at C.

Solution:
Prove that:
(i) $4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}$
(ii) $4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2}$
(iii) $4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}\right)=5 \mathrm{AB}^{2}$.

Ans. (a) Given. In $\triangle \mathrm{ABC}$, right angled at C . D and E are mid-points of the sides BC and CA respectively.
To prove. (i) $4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}$
(ii) $4 \mathrm{BE}^{2}=4 \mathrm{CB}^{2}+\mathrm{AC}^{2}$
(iii) $4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}\right)=5 \mathrm{AB}^{2}$

Proof. In right angle $\triangle A C D$,

$$
\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2} \quad \text { (By Pythagoras }
$$ theorem)

$$
\begin{aligned}
& 4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+4 \mathrm{CD}^{2} \\
& \quad(\text { Multiplying both sides by } 4) \\
& 4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+(2 \mathrm{BD})^{2} \\
& 4 \mathrm{AD}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2} \\
&(\because 2 \mathrm{BD}=\mathrm{BC} \quad \therefore \quad \mathrm{D} \text { is mid-points of } \mathrm{BC})
\end{aligned}
$$

(ii) In right angled $\triangle \mathrm{BCE}$
$4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+4 \mathrm{CE}^{2} \quad$ (Multiplying both sides by 4)

$$
\begin{align*}
& 4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+(2 \mathrm{CE})^{2} \\
& 4 \mathrm{BE}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2} \tag{1}
\end{align*}
$$

$(\because 2 C E=\mathrm{AC} \quad \therefore \mathrm{E}$ is mid-points of AC$)$
Adding (1) and (2), we get
$4 \mathrm{AD}^{2}+4 \mathrm{BE}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}+4 \mathrm{BC}^{2}+\mathrm{AC}^{2}$
$4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}\right)=5 \mathrm{AC}^{2}+5 \mathrm{BC}^{2}$
$=5\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)$
$=5\left(\mathrm{AB}^{2}\right)$
$\left(\because\right.$ In right angled $\left.\triangle A B C, A C^{2}+B C^{2}=A B^{2}\right)$)
lence, $4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}\right)=5 \mathrm{AB}^{2}$

Question 22.
If $A D, B E$ and CF are medians of EABC, prove that $3\left(A B^{2}+B C^{2}+C A^{2}\right)=4\left(A D^{2}+\right.$ $B E^{2}+C F^{2}$).
Solution:
Given : AD, BE and CF are medians of $\triangle \mathrm{ABC}$.
To prove : $3\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\right.$ CF^{2})

Construction. Draw $\mathrm{AP} \perp \mathrm{BC}$.
Proof. In right angled $\triangle \mathrm{APB}$.
$\mathrm{AB}^{2}=A \mathrm{P}^{2}+\mathrm{BP}^{2}$
$=A P^{2}+(B D-P D)^{2}$
$=A P^{2}+B D^{2}+P D^{2}-2 B D . P D$
$=\left(A P^{2}+\mathrm{PD}^{2}\right)+\mathrm{BD}^{2}-2 \mathrm{BD} \cdot \mathrm{PD}$
$=A D^{2}+\left(\frac{1}{2} B C\right)^{2}-2 \times\left(\frac{1}{2} B C\right) \cdot P D$

$$
\begin{equation*}
\left(\because \mathrm{AP}^{2}+\mathrm{PD}^{2}=\mathrm{AD}^{2} \quad \text { and } \mathrm{BD}=\frac{1}{2} \mathrm{BC}\right) \tag{1}
\end{equation*}
$$

$=\mathrm{AD}^{2}+\frac{1}{4} \mathrm{BC}^{2}-\mathrm{BC} \cdot \mathrm{PD}$
Now, in $\triangle \mathrm{APC}$
$A C^{2}=A P^{2}+P C^{2} \quad$ (By Pythagoras theorem)
$=A P^{2}+(P D+D C)^{2}$
$=A P^{2}+P D^{2}+D C^{2}+2 P D \cdot D C$
$=\left(A P^{2}+P D D^{2}\right)+\left(\frac{1}{2} B C\right)^{2}+2 P D \times\left(\frac{1}{2} B C\right)$

$$
\left(\because \quad D C=\frac{1}{2} B C\right)
$$

$=\mathrm{AD}^{2}+\frac{1}{4} \mathrm{BC}^{2}+\mathrm{PD} \cdot \mathrm{BC}$
Adding (1) and (2)
$\therefore \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$
Similarly, Draw the perpendicular from B and C on $A C$ and $A B$ respectively, we get
$\mathrm{BC}^{2}+\mathrm{CA}^{2}=2 \mathrm{CF}^{2}+\frac{1}{2} \mathrm{AB}^{2}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=2 \mathrm{BE}^{2}+\frac{1}{2} \mathrm{AC}^{2}$
Adding (3), (4) and (5), we get
$2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)$
$=2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)+\frac{1}{2}\left(\mathrm{BC}^{2}+\mathrm{AB}^{2}+\mathrm{AC}^{2}\right)$
$\Rightarrow \quad 2\left(A B^{2}+B C^{2}+C A^{2}\right)-\frac{1}{2}\left(A B^{2}+B C^{2}+\right.$
$\left.\mathrm{CA}^{2}\right)=2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)$
$\Rightarrow \quad \frac{3}{2}\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=2\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\right.$
CF^{2})
$\therefore 3\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}\right)=4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)$
Hence, the proved.

Question 23.

(a) In fig. (i) given below, the diagonals AC and BD of a quadrilateral ABCD intersect at O, at right angles. Prove that
$A B^{2}+C D^{2}=A D^{2}+B C^{2}$.
(b) In figure (ii) given below, $O D \perp B C, O E \perp C A$ and $O F \perp A B$. Prove that :
(i) $O A^{2}+O B^{2}+O C^{2}=A F^{2}+B D^{2}+C E^{2}+O D^{2}+O E^{2}+O F^{2}$.
(ii) $O A F^{2}+B D^{2}+C E^{2}=F B^{2}+D C^{2}+E A^{2}$.

(i)

(ii)

Solution:
(a) Given. In quadrilateral ABCD the diagonals $A C$ and $B D$ intersect at O at right angles.

To prove. $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Proof. In right angled $\triangle \mathrm{AOB}$
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$
(By Pythagoras theorem)
In right angled $\triangle C O D$
$\mathrm{CD}^{2}=\mathrm{OD}^{2}+\mathrm{OC}^{2}$
Adding (1) and (2),
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\left(\mathrm{AO}^{2}+\mathrm{OB}^{2}\right)+\left(\mathrm{OD}^{2}+\mathrm{OC}^{2}\right)$
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\left(\mathrm{OA}^{2}+\mathrm{OD}^{2}\right)+\left(\mathrm{OB}^{2}+\mathrm{OC}^{2}\right)$
Now, in right angled triangle $A O D$ and $B O C$

By Pythagoras theorem,
$\mathrm{OA}^{2}+\mathrm{OD}^{2}=\mathrm{AD}^{2}$
$\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{BC}^{2}$
From (3), (4) and (5), we get
$\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}$
Hence, the result.
(b) Given $\mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{CA}$ and $\mathrm{OF} \perp \mathrm{AB}$.

To prove.
(i) $\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}+\mathrm{OD}^{2}$
$+\mathrm{OE}^{2}+\mathrm{OF}^{2}$.
(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{FB}^{2}=\mathrm{DC}^{2}+\mathrm{EA}^{2}$.

Proof.
In right angled $\triangle \mathrm{AOF}$
$\mathrm{OA}^{2}=\mathrm{AF}^{2}+\mathrm{OF}^{2}$
In right angled $\triangle B O D$
$\mathrm{OB}^{2}=\mathrm{BD}^{2}+\mathrm{OD}^{2}$

In right angled $\triangle \mathrm{COE}$
$\mathrm{OC}^{2}=\mathrm{CE}^{2}+\mathrm{OE}^{2}$
Adding (1), (2) and (3), we get
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}+\mathrm{OD}^{2}+\mathrm{OE}^{2}+$
OF^{2}
(Proved (i) part)
(ii) Also $\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}$
$=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}+\mathrm{OD}^{2}+\mathrm{OC}^{2}+\mathrm{OF}^{2}$
$\Rightarrow \quad \mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}+$
$\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}$
Again in $\triangle \mathrm{BOF}, \triangle \mathrm{COD}, \triangle \mathrm{AOE}$,
$\mathrm{BF}^{2}=\mathrm{OB}^{2}-\mathrm{OF}^{2}$
$\mathrm{DC}^{2}=\mathrm{OC}^{2}-\mathrm{OD}^{2}$
and $\mathrm{EA}^{2}=\mathrm{OA}^{2}-\mathrm{OE}^{2}$
Adding above, we get
$\mathrm{BF}^{2}+\mathrm{DC}^{2}+\mathrm{EA}^{2}=\mathrm{OB}^{2}-\mathrm{OF}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}+\mathrm{OA}^{2}-$ OF^{2}
$\mathrm{BF}^{2}+\mathrm{DC}^{2}+\mathrm{EA}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-$ OF^{2}
From (4) and (5)
$\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{BF}^{2}+\mathrm{DC}^{2}+\mathrm{EA}^{2}$
Hence, the result.

Question 24.
In a quadrilateral, $A B C D \angle B=90^{\circ}=\angle D$. Prove that $2 A C^{2}-B C 2=A B^{2}+A D^{2}+D C^{2}$.

Solution:
Given. In quadrilateral $\mathrm{ABCD}, \angle \mathrm{B}=90^{\circ}$
and $\angle \mathrm{D}=90^{\circ}$
To prove. $2 \mathrm{AC}^{2}-\mathrm{BC}^{2}=A \mathrm{~B}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}$

Construction. Join AC.
Proof. In right angled $\triangle \mathrm{ABC}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
(By Pythagoras theorem)
In right angled $\triangle \mathrm{ACD}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
(By Pythagoras theorem)
Adding (1) from (2), we get
$A C^{2}+A C^{2}=A B^{2}+B C^{2}+A D^{2}+D^{2}$
$2 \mathrm{AC}^{2}=A B^{2}+\mathrm{BC}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$2 \mathrm{AC}^{2}-\mathrm{BC}^{2}=A \mathrm{~B}^{2}+A D^{2}+D C^{2}$
Hence, the result.

Question 25.
In a $\triangle A B C, \angle A=90^{\circ}, C A=A B$ and D is a point on $A B$ produced. Prove that : $D C^{2}-B D^{2}=2 A B . A D$.
Solution:

Given. $\triangle \mathrm{ABC}$ in which $\angle \mathrm{A}=90^{\circ}, \mathrm{CA}=$ $A B$ and D is point on $A B$ produced.
To prove. $\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB} . \mathrm{AD}$
Proof. In right angled $\triangle A C D$,
$\mathrm{DC}^{2}=\mathrm{AC}^{2}+\mathrm{AD}^{2}$
$D C^{2}=A C^{2}+(A B+B D)^{2}$

$\mathrm{DC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}+\mathrm{BD}^{2}+2 \mathrm{AB} \cdot \mathrm{BD}$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}+2 \mathrm{AB} \cdot \mathrm{BD}$
But $\mathrm{AC}=\mathrm{AB}$
(given)
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{AB}^{2}+2 \mathrm{AB} \cdot \mathrm{BD}$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB}^{2}+2 \mathrm{AB} \cdot \mathrm{BD}$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB}(\mathrm{AB}+\mathrm{BD})$
$\mathrm{DC}^{2}-\mathrm{BD}^{2}=2 \mathrm{AB} \cdot \mathrm{AD}$
Hence, the result.

Question 26.

In an isosceles triangle $A B C, A B=A C$ and D is a point on $B C$ produced. Prove that $A D^{2}=A C^{2}+B D . C D$.

Solution:
Given. Isosceles $\triangle A B C$ such that $A B=A C$.
D is mid-points on $B C$ produced.
To prove. $\quad \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD} . \mathrm{CD}$

Const. Draw AP \perp BC
Proof. In right angled $\triangle A P D$,
$\mathrm{AD}^{2}=\mathrm{AP}^{2}+\mathrm{PD}^{2}$
$A D^{2}=A P^{2}+(P C+C D)^{2}$
$\mathrm{AD}^{2}=\mathrm{AP}^{2}+\mathrm{PC}^{2}+\mathrm{CD}^{2}+2 \mathrm{PC} . \mathrm{CD}$
In right angled $\triangle \mathrm{APC}$
$\mathrm{AC}^{2}=A \mathrm{P}^{2}+\mathrm{PC}^{2}$
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}+2 \mathrm{PC} . \mathrm{CD}$
But $\triangle A B C$ is isosceles triangle and $A P \perp B C$
$\therefore \mathrm{PC}=\frac{1}{2} \mathrm{BC}$
$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}+2 \times \frac{1}{2} \mathrm{BC} . \mathrm{CD}$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}+\mathrm{BC} . \mathrm{CD}$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}[\mathrm{CD}+\mathrm{BC}]$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD} . \mathrm{BD}$
i.e $\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD} . \mathrm{CD}$

Hence, the result.

Question P.Q.

(a) In figure (i) given below, PQR is a right angled triangle, right angled at Q. XY is parallel to $Q R$. $P Q=6 \mathrm{~cm}, P Y=4 \mathrm{~cm}$ and $P X: O X=1: 2$. Calculate the length of $P R$ and QR.
(b) In figure (ii) given below, ABC is a right angled triangle, right angled at B.DE || $B C . A B=12 \mathrm{~cm}, A E=5 \mathrm{~cm}$ and $A D: D B=1: 2$. Calculate the perimeter of $A B C$. (c)In figure (iii) given below. $A B C D$ is a rectangle, $A B=12 \mathrm{~cm}, B C-8 \mathrm{~cm}$ and E is a point on $B C$ such that $C E=5 \mathrm{~cm}$. DE when produced meets $A B$ produced at F.
(i) Calculate the length $D E$.
(ii) Prove that \triangle DEC \sim AEBF and Hence, compute EF and BF.

Solution:
(a) Given. In right angled $\triangle \mathrm{PQR}, \mathrm{XY} \| \mathrm{QR}$ $, P Q=6 \mathrm{~cm}, P Y=4 \mathrm{~cm}$ and $P X: Q X=1: 2$.
Required. The length of $P R$ and $Q R$.
Sol. PX: $\mathrm{QX}=1: 2$ (given)
LetPX $=x \mathrm{~cm}$
then $Q X=2 x \mathrm{~cm}$
$\therefore \mathrm{PQ}=\mathrm{PX}+\mathrm{QX}$
$\Rightarrow 6=x+2 x \Rightarrow 3 x=6 \Rightarrow x=\frac{6}{3}=2$
$\therefore \mathrm{PX}=2 \mathrm{~cm}$ and $\mathrm{QX}=2 \times 2 \mathrm{~cm}=4 \mathrm{~cm}$
In right angled $\triangle \mathrm{PXY}$
$P Y^{2}=P X^{2}+X Y^{2}$
(By Pythagoras
theorem)
$\Rightarrow \quad(4)^{2}=(2)^{2}+X Y^{2} \Rightarrow \quad X Y^{2}=(4)^{2}-4$
$\Rightarrow \quad X Y^{2}=12 \quad \Rightarrow \quad X Y=\sqrt{12}=2 \sqrt{3}$
Also, XY \| QR
$\therefore \frac{P X}{P Q}=\frac{X Y}{Q R} \Rightarrow \frac{2}{6}=\frac{2 \sqrt{3}}{Q R}$.
$\Rightarrow \quad 2 Q R=2 \sqrt{3} \times 6$
$\Rightarrow \mathrm{QR}=\frac{2 \sqrt{3} \times 6}{2}$
$=6 \sqrt{3} \mathrm{~cm}$.

Also $\frac{P X}{P Q}=\frac{P Y}{P R}$
$\Rightarrow \quad \frac{2}{6}=\frac{4}{P R}$
$\mathrm{PR}=\frac{6 \times 4}{2}=\frac{24}{2}=12 \mathrm{~cm}$
Hence, $\mathrm{PR}=12 \mathrm{~cm}$ and $\mathrm{QR}=6 \sqrt{3} \mathrm{~cm}$ Ans.
(b) Given. In right angled $\triangle \mathrm{ABC}$,
$\angle \mathrm{B}=90^{\circ}, \mathrm{DE} \| \mathrm{BC}, \mathrm{AB}=12 \mathrm{~cm}, \mathrm{AE}=5 \mathrm{~cm}$ and
$\mathrm{AD}: \mathrm{DB}=1: 2$
Required. The perimeter of $\triangle \mathrm{ABC}$.
Sol. AD : $\mathrm{DB}=1: 2$ (given)
let $\mathrm{AD}=x \mathrm{~cm}$
then $\mathrm{DB}=2 x \mathrm{~cm}$
$\therefore \quad \mathrm{AB}=\mathrm{AD}+\mathrm{DB}$
$\Rightarrow 12=x+2 x \Rightarrow 3 x=12 \Rightarrow x=\frac{12}{3}$
$=4$
$\therefore \mathrm{AD}=x=4 \mathrm{~cm}$ and $\mathrm{DB}=2 x=2 \times 4 \mathrm{~cm}=8$
cm
In right angled $\triangle \mathrm{ADE}$

$$
\begin{array}{lr}
\mathrm{AE}^{2}=\mathrm{AD}^{2}+\mathrm{DE}^{2} & \text { (By Pythagoras } \\
\text { theorem) } \\
\Rightarrow & (5)^{2}=(4)^{2}+\mathrm{DE}^{2} \Rightarrow \\
\Rightarrow \quad 25=16+\mathrm{DE}^{2} \\
\Rightarrow & \mathrm{DE}^{2}=25-16 \Rightarrow \mathrm{DE}^{2}=9 \\
\Rightarrow & \mathrm{DE}=\sqrt{9}=3 \mathrm{~cm}
\end{array}
$$

Now, DE || BC
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{DE}}{\mathrm{BC}}$
$\Rightarrow \quad \frac{4}{12}=\frac{3}{\mathrm{BC}} \Rightarrow \quad \mathrm{BC}=\frac{12 \times 3}{4}=3 \times 3=9$
cm

Also, $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
$\Rightarrow \quad \frac{4}{12}=\frac{5}{\mathrm{AC}} \Rightarrow \mathrm{AC}=\frac{12 \times 5}{4}=3 \times 5=15$
cm
Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$
$=12 \mathrm{~cm}+9 \mathrm{~cm}+15 \mathrm{~cm}=36 \mathrm{~cm}$ Ans.
(c) Given. ABCD is a rectangle, $\mathrm{AB}=12 \mathrm{~cm}$, $B C=8 \mathrm{~cm}$, and E is a point on $B C$ such that $\mathrm{CE}=5 \mathrm{~cm}$.
Required. (i) The length of DE.
(ii) To prove $\triangle \mathrm{DEC} \sim \triangle \mathrm{EBF}$ and Hence, find EF and $B F$.
(i) In right angled $\triangle C D E$,
$\mathrm{DE}^{2}=\mathrm{CD}^{2}+\mathrm{CE}^{2}$
$\mathrm{DE}^{2}=\mathrm{AB}^{2}+\mathrm{CE}^{2} \quad[\mathrm{CD}=\mathrm{AB}]$
$\Rightarrow \quad \mathrm{DE}^{2}=(12)^{2}+(5)^{2} \Rightarrow \mathrm{DE}^{2}=144+25$
$\Rightarrow \quad \mathrm{DE}^{2}=169 \Rightarrow \mathrm{DE}=\sqrt{169}=13 \mathrm{~cm}$
Ans.
(ii) In $\triangle \mathrm{DEC}$ and $\triangle \mathrm{EBF}$
$\angle \mathrm{DEC}=\angle \mathrm{BEF} \quad$ (vertically opposite
angles)
$\angle \mathrm{DCE}=\angle \mathrm{EBF} \quad \quad\left(\right.$ each $\left.90^{\circ}\right)$
$\therefore \triangle \mathrm{DCE} \sim \triangle \mathrm{EBF} \quad$ (By A. A. axiom of similarity)

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{CE}}{\mathrm{BE}}=\frac{\mathrm{DE}}{\mathrm{EF}} \\
\Rightarrow & \frac{5}{3}=\frac{13}{\mathrm{EF}} \quad(\because \mathrm{BE}=8 \mathrm{~cm}-5 \mathrm{~cm}=3 \mathrm{~cm}) \\
\Rightarrow & 5 \times \mathrm{EF}=13 \times 3 \\
\Rightarrow & \mathrm{EF}=\frac{13 \times 3}{5}=\frac{39}{5}=7.8 \mathrm{~cm}
\end{array}
$$

Also, $\frac{\mathrm{CE}}{\mathrm{BE}}=\frac{\mathrm{DE}}{\mathrm{BF}} \Rightarrow \frac{5}{3}=\frac{12}{\mathrm{BF}}$
$(\because \mathrm{BF}=8.5 \mathrm{~cm}-5 \mathrm{~cm}=3 \mathrm{~cm}$ also $\mathrm{CD}=\mathrm{AB}=$
12 cm)
$\Rightarrow \mathrm{BF} \times 5=12 \times 3 \Rightarrow \mathrm{BF}=\frac{12 \times 3}{5}=\frac{36}{5}=7.2 \mathrm{~cm}$
Hence, $\mathrm{DE}=13 \mathrm{~cm}, \mathrm{EF}=7.8 \mathrm{~cm}$ and $\mathrm{BF}=7.2 \mathrm{~cm}$.

Multiple Choice Questions

Choose the correct answer from the given four options (1 to 7):
Question 1.
In a $\triangle A B C$, if $A B=6 \sqrt{3} \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$, then $\angle B$ is
(a) 120°
(b) 90°
(c) 60°
(d) 45°

Solution:
In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, B C=6 \mathrm{~cm}, \quad A C$
$=12 \mathrm{~cm}$

$\because \mathrm{AB}^{2}+\mathrm{BC}^{2}=(6 \sqrt{3})^{2}+(6)^{2}$
$=108+36=144$
and $\mathrm{AC}^{2}=12^{2}=144$
$\therefore \angle \mathrm{B}=90^{\circ}$
(b)
(Converse of Pythagoras Theorem)

Question 2.

If the sides of a rectangular plot are 15 m and 8 m , then the length of its diagonal is
(a) 17 m
(b) 23 m
(c) 21 m
(d) 17 cm

Solution:
Length of a rectangle $(l)=15 \mathrm{~m}$ and breadth $(b)=8 \mathrm{~m}$
\therefore Diagonal $=\sqrt{l^{2}+b^{2}}$

$$
\begin{align*}
& =\sqrt{15^{2}+8^{2}}=\sqrt{225+64} \\
& =\sqrt{289}=17 \mathrm{~m} \tag{a}
\end{align*}
$$

Question 3.
The lengths of the diagonals of a rhombus are 16 cm and 12 cm . The length of the side of the rhombus is
(a) 9 cm
(b) 10 cm
(c) 8 cm
(d) 20 cm

Solution:
Lengths of diagonals of rhombus are 16 cm and 12 cm

\because Diagonals of rhombus bisect each other at right angles
Length of side

$$
\begin{align*}
& =\sqrt{\left(\frac{\text { First diagonal }}{2}\right)^{2}+\left(\frac{\text { Second diagonal }}{2}\right)^{2}} \\
& =\sqrt{\left(\frac{16}{2}\right)^{2}+\left(\frac{12}{2}\right)^{2}} \\
& =\sqrt{8^{2}+6^{2}}=\sqrt{64+36} \\
& =\sqrt{100}=10 \mathrm{~cm} \tag{b}
\end{align*}
$$

Question 4.

If a side of a rhombus is 10 cm and one of the diagonals is 16 cm , then the length of the other diagonals is
(a) 6 cm
(b) 12 cm
(c) 20 cm
(d) 12 cm

Solution:
One diagonal of rhombus $=16 \mathrm{~cm}$
Side $=10 \mathrm{~cm}$

\because The diagonals of a rhombus bisect each other at right angles
\therefore In right $\triangle A O B$,
$\mathrm{AO}=\frac{16}{2}=8 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$
$\therefore \mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}$
$\Rightarrow 10^{2}=8^{2}+\mathrm{BO}^{2} \Rightarrow 100=64+\mathrm{BO}^{2}$
$\Rightarrow \mathrm{BO}^{2}=100-64=36=(6)^{2}$
$\therefore \mathrm{BO}=6 \mathrm{~cm}$
\therefore Other diagonal $\mathrm{BD}=6 \times 2=12 \mathrm{~cm}$

Question 5.

If a ladder 10 m long reaches a window 8 m above the ground, then the distance of the foot of the ladder from the base of the wall is
(a) 18 m
(b) 8 m
(c) 6 m
(d) 4 m

Solution:
Length of ladder $=10 \mathrm{~m}$
Height of window $=8 \mathrm{~m}$

\therefore Distance of ladder from the base of wall

$$
\begin{align*}
& =\sqrt{\mathrm{AC}^{2}-A B^{2}}=\sqrt{10^{2}-8^{2}} \\
& =\sqrt{100-64}=\sqrt{36}=6 \mathrm{~m} \tag{c}
\end{align*}
$$

Question 6.
A girl walks 200 m towards East and then she walks ISO m towards North. The distance of the girl from the starting point is
(a) 350 m
(b) 250 m
(c) 300 m
(d) 225 m

Solution:
A girl walks 200 m towards East and then 150 m towards North

Distance of girls from the starting point (OB)
$=\sqrt{\mathrm{OA}^{2}+\mathrm{AB}^{2}}=\sqrt{(200)^{2}+(150)^{2}}$
$=\sqrt{40,000+22500}=\sqrt{62500}=250 \mathrm{~m}(\mathrm{~b})$

Question 7.
A ladder reaches a window 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. If the length of the ladder is 15 m , then the width of the street is
(a) 30 m
(b) 24 m
(c) 21 m
(d) 18 m

Solution:
Height of window $=12 \mathrm{~m}$
Length of ladder $=15 \mathrm{~m}$

In right $\triangle A B C$

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \Rightarrow \mathrm{BC}^{2}=\mathrm{AC}^{2}-\mathrm{AB}^{2}
$$

$\Rightarrow \mathrm{BC}^{2}=15^{2}-12^{2}=225-144=81=(9)^{2}$
$\therefore \mathrm{BC}=9 \mathrm{~m}$
Similarly in right $\triangle C D E$

$$
\begin{aligned}
& \mathrm{EC}^{2}=\mathrm{DC}^{2}-\mathrm{DE}^{2}=15^{2}-9^{2} \\
& =225-81=144=(12)^{2}
\end{aligned}
$$

$\therefore \mathrm{EC}=12 \mathrm{~m}$
\therefore Width of street $\mathrm{EB}=\mathrm{EC}+\mathrm{CB}$

$$
\begin{equation*}
=9+12=21 \mathrm{~m} \tag{c}
\end{equation*}
$$

Chapter Test

Question 1.

(a) In fig. (i) given below, $A D \perp B C, A B=25 \mathrm{~cm}, A C=17 \mathrm{~cm}$ and $A D=15 \mathrm{~cm}$. Find the length of BC.
(b) In figure (ii) given below, $\angle B A C=90^{\circ}, \angle A D C=90^{\circ}, A D=6 \mathrm{~cm}, C D=8 \mathrm{~cm}$ and BC = 26 cm . Find :
(i) $A C$ (ii) $A B$ (iii) area of the shaded region.
(c) In figure (iii) given below, triangle $A B C$ is right angled at B. Given that $A B=9$ $\mathrm{cm}, A C=15 \mathrm{~cm}$ and D, E are mid-points of the sides $A B$ and $A C$ respectively, calculate
(i) the length of $B C$ (ii) the area of \triangle ADE.

Solution:
(a) Given. In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}, \mathrm{AB}=25$
$\mathrm{cm}, \mathrm{AC}=17 \mathrm{~cm}$ and $\mathrm{AD}=15 \mathrm{~cm}$
Required. The length of BC .
Sol. In right angled $\triangle \mathrm{ABD}$,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
(By Pythagoras theorem)

$$
\begin{aligned}
& \therefore \mathrm{BD}^{2}=\mathrm{AB}^{2}-\mathrm{AD}^{2} \\
& =(25)^{2}-(15)^{2} \\
& =625-225=400 \\
& \Rightarrow \quad \mathrm{BD}=\sqrt{400}=20 \mathrm{~cm} .
\end{aligned}
$$

Now, in right angled \triangle ADC
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \quad$ (By Pythagoras theorem)
$\therefore \quad \mathrm{DC}^{2}=\mathrm{AC}^{2}-\mathrm{AD}^{2}$
$\Rightarrow \quad \mathrm{DC}^{2}=(17)^{2}-(15)^{2}$
$\Rightarrow \mathrm{DC}^{2}=289-225=64$
$\mathrm{DC}=\sqrt{64}=8 \mathrm{~cm}$
Hence, $\mathrm{BC}=\mathrm{BD}+\mathrm{DC}=20 \mathrm{~cm}+8 \mathrm{~cm}=28 \mathrm{~cm}$.
(b) Given. In $\triangle \mathrm{ABC}$,
$\angle \mathrm{BAC}=90^{\circ}, \angle \mathrm{ADC}=90^{\circ} \mathrm{AD}=6 \mathrm{~cm}, \mathrm{CD}=8$
cm and $\mathrm{BC}=26 \mathrm{~cm}$.
Required. (i) AC (ii) AB
(iii) area of the shaded region

Sol. In right angled $\triangle \mathrm{ADC}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$ (By Pythagoras theorem)
$=(6)^{2}+(8)^{2}$
$=36+64=100$
$\therefore=\sqrt{100}=10 \mathrm{~cm}$ Ans.
In right angled $\triangle \mathrm{ABC}$

$$
\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2} \quad(\text { By Pythagoras theorem })
$$

$\Rightarrow \quad(26)^{2}=\mathrm{AB}^{2}+(10)^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=(26)^{2}-(10)^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=676-100=576$
$\Rightarrow \quad \mathrm{AB}^{2}=576$
$\Rightarrow \mathrm{AB}=\sqrt{576}=24 \mathrm{~cm}$
Now, Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}$
$=\frac{1}{2} \times 24 \times 10 \mathrm{~cm}^{2}=12 \times 10 \mathrm{~cm}^{2}=120 \mathrm{~cm}^{2}$.
Area of $\triangle \mathrm{ADC}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{DE}$
$=\frac{1}{2} \times 6 \times 8 \mathrm{~cm}^{2}=3 \times 8 \mathrm{~cm}^{2}=24 \mathrm{~cm}^{2}$
Now, Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}$
$=\frac{1}{2} \times 24 \times 10 \mathrm{~cm}^{2}=12 \times 10 \mathrm{~cm}^{2}=120 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{ADC}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{DC}$
$=\frac{1}{2} \times 6 \times 8 \mathrm{~cm}^{2}=3 \times 8 \mathrm{~cm}^{2}=24 \mathrm{~cm}^{2}$
Hence, area of shaded region $=$
Area of $\triangle A B C$ - Area of $\triangle A D C$
$=120 \mathrm{~cm}^{2}-24 \mathrm{~cm}^{2}=96 \mathrm{~cm}^{2}$
(c) Given. In right angled $\triangle \mathrm{ABC}, \mathrm{AB}=9 \mathrm{~cm}$, $A C=15 \mathrm{~cm}$, and D, E are mid-points of the sides $A B$ and $A C$ respectively.
Required. (i) length of BC
(ii) the area of $\triangle \mathrm{ADE}$

Sol. In right angled \triangle ADE,
(By Pythagoras theorem)
$\mathrm{AE}^{2}=\mathrm{AD}^{2}+\mathrm{DE}^{2}$
$\Rightarrow \quad\left(\frac{\mathrm{AC}}{2}\right)^{2}=\left(\frac{\mathrm{AB}}{2}\right)^{2}+\mathrm{DE}^{2}$
($\because \mathrm{D}$ and E are mid-points of AB and AC respectively.)

$$
\begin{aligned}
& \Rightarrow \quad\left(\frac{15}{2}\right)^{2}=\left(\frac{9}{2}\right)^{2}+\mathrm{DE}^{2} \\
& \Rightarrow \quad \mathrm{DE}^{2}=\frac{225}{4}-\frac{81}{4} \Rightarrow \quad \mathrm{DE}^{2}=\frac{144}{4}=36 \\
& \Rightarrow \quad \mathrm{DE}=\sqrt{36}=6 \mathrm{~cm}
\end{aligned}
$$

Since D and E are mid-points of $A B$ and $A C$ respectively.
$\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{BC}$

$$
\Rightarrow \quad \mathrm{BC} \quad=2 \mathrm{DE}=2 \times 6 \mathrm{~cm}=12 \mathrm{~cm}
$$

(ii) Area of $\triangle \mathrm{ADE}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{DE}$
$=\frac{1}{2} \times\left(\frac{\mathrm{AB}}{2}\right) \times \mathrm{DE}=\frac{1}{2} \times \frac{9}{2} \times 6 \mathrm{~cm}^{2}$
$=\frac{9}{2} \times 3 \mathrm{~cm}^{2}=\frac{27}{2} \mathrm{~cm}^{2}=13.5 \mathrm{~cm}^{2}$ Ans.

Question 2.

If in $\triangle A B C, A B>A C$ and $A D I B C$, prove that $A B^{2}-A C^{2}=B D^{2}-C D^{2}$.

Solution:
Given. In $\triangle A B C, A B>A C$ and $A D \perp B C$
To prove. $\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$

Proof. In right angled $\triangle \mathrm{ABD}$
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
(By Pythagoras theorem)
In right angled $\triangle \mathrm{ACD}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
Subtracting (2) from (1), we get
$A B^{2}-A C^{2}=\left(A D^{2}+B D^{2}\right)-\left(A D^{2}+C D^{2}\right)$
$=A D^{2}+\mathrm{BD}^{2}-\mathrm{AD}^{2}-\mathrm{CD}^{2}$
$=\mathrm{BD}^{2}-\mathrm{CD}^{2}$
$\therefore \quad \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$
Hence, the result.

Question 3.
In a right angled triangle $A B C$, right angled at C, P and Q are the points on the sides $C A$ and $C B$ respectively which divide these sides in the ratio 2:1. Prove that (i) $9 A Q^{2}=9 A C^{2}+4 B C^{2}$
(ii) $9 B P^{2}=9 B C^{2}+4 A C^{2}$
(iii) $9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}$.

Solution:
A right angled $\triangle \mathrm{ABC}$ in which $\angle \mathrm{C}$
$90^{\circ} . \mathrm{P}$ and Q are points on the side CA and CB respectively such that $\mathrm{CP}: \mathrm{AP}=2: 1$ and $\mathrm{CQ}: \mathrm{BQ}=2: 1$
To prove. (i) $9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}$
(ii) $9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
(iii) $9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13 \mathrm{AB}^{2}$

Construction. Join $A Q$ and $B P$.
Proof. (i) In right angled $\triangle \mathrm{ACQ}$
$\mathrm{AQ}^{2}=\mathrm{AC}^{2}+\mathrm{QC}^{2}$
(By Pythagoras theorem)
$9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+9 \mathrm{QC}^{2}$
(Multiplying both sides by 9)
$=9 \mathrm{AC}^{2}+(3 \mathrm{QC})^{2}=9 \mathrm{AC}^{2}+(2 \mathrm{BC})^{2}$
$\left[\because \mathrm{BQ}: \mathrm{CQ}: 1: 2 \Rightarrow \frac{\mathrm{QC}}{\mathrm{BC}}=\frac{\mathrm{QC}}{\mathrm{BQ}+\mathrm{CQ}}=\frac{2}{3} \Rightarrow 3 \mathrm{QC}=2 \mathrm{BC}\right]$
$=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}$
$\therefore 9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}$
(ii) In right angled $\triangle B P C$

$$
\begin{aligned}
& B^{B^{2}=B C^{2}+\mathrm{CP}^{2}} \\
& 9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+9 \mathrm{CP}^{2} \quad(\text { By Pythagoras theorem }) \\
& \quad(\because \text { Multiplying both side by } 9) \\
& =9 \mathrm{BC}^{2}+(3 \mathrm{CP})^{2}=9 \mathrm{BC}^{2}+(2 \mathrm{AC})^{2} \\
& {\left[\because \mathrm{AP}: C P=1: 2 \frac{\mathrm{CP}}{\mathrm{AC}}=\frac{\mathrm{CP}}{\mathrm{AP}+\mathrm{CP}}=\frac{2}{3} 3 \mathrm{CP}=2 \mathrm{AC}\right]}
\end{aligned}
$$

$=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
$\therefore 9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
(iii) Adding (1) and (2),
$9 \mathrm{AQ}^{2}+9 \mathrm{BP}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}+9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
$=13 \mathrm{AC}^{2}+13 \mathrm{BC}^{2}=13\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)=13 \mathrm{AB}^{2}$
[In right angled $\triangle A B C=A B^{2}=A C^{2}+B C^{2}$]
$\therefore 9 \mathrm{AQ}+9 \mathrm{BP}^{2}=13 \mathrm{AB}^{2}$
Hence, the result.

Question 4.
In the given figure, $\triangle P Q R$ is right angled at Q and points S and T trisect side $Q R$.
Prove that $8 \mathrm{PT}^{2}-3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}$.
Solution:

In the $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}$
T and S are points on RQ such that these trisect it
i.e., $\mathrm{RT}=\mathrm{TS}=\mathrm{SQ}$

To prove: $8 \mathrm{PT}^{2}=3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}$
Proof: I et $\mathrm{RT}=\mathrm{TS}=\mathrm{SQ}=x$
In right $\triangle P R Q$
$\mathrm{PR}^{2}=\mathrm{RQ}^{2}+\mathrm{PQ}^{2}=(3 x)^{2}+\mathrm{PQ}^{2}=9 x^{2}+\mathrm{PQ}^{2}$
Similarly in right PTS,
$\mathrm{PT}^{2}=\mathrm{TQ}^{2}+\mathrm{PQ}^{2}=(2 x)^{2}+\mathrm{PQ}^{2}=4 x^{2}+\mathrm{PQ}^{2}$
and in PSQ,
$\mathrm{PS}^{2}=\mathrm{SQ}^{2}+\mathrm{PQ}^{2}=x^{2}+\mathrm{PQ}^{2}$
$8 \mathrm{PT}^{2}=8\left(4 x^{2}+\mathrm{PQ}^{2}\right)=32 \mathrm{x}^{2}+8 \mathrm{PQ}^{2}$
$3 \mathrm{PR}^{2}=3\left(9 x^{2}+\mathrm{PQ}^{2}\right)=27 x^{2}+3 \mathrm{PQ}^{2}$
$5 \mathrm{PS}^{2}=5\left(x^{2}+\mathrm{PQ}^{2}\right)=5 x^{2}+5 \mathrm{PQ}^{2}$
LHS $=8 \mathrm{PT}^{2}=32 x^{2}+8 \mathrm{PQ}^{2}$
RHS $=3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}=27 x^{2}+3 \mathrm{PQ}^{2}+5 x^{2}+$
5PQ ${ }^{2}$
$=32 x^{2}+8 \mathrm{PQ}^{2}$
\therefore LHS $=$ RHS
Hence proved.

Question 5.
In a quadrilateral $A B C D, \angle B=90^{\circ}$. If $A D^{2}=A B^{2}+B C^{2}+C D^{2}$, prove that $\angle A C D=$ 90°.
Solution:

In quadrilateral $\mathrm{ABCD}, \angle \mathrm{B}=90^{\circ}$ and $\mathrm{AD}^{2}=$ $\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}$
To prove : $\angle \mathrm{ACD}=90^{\circ}$
Proof: In $\angle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
(Pythagoras Theorem)

$$
\begin{equation*}
\text { But } \mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2} \tag{i}
\end{equation*}
$$

$\Rightarrow \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2}$
[From (i)]
\therefore In $\triangle A C D$,
$\angle \mathrm{ACD}=90^{\circ}$
(Converse of Pythagoras Theorem)

Question 6.

In the given figure, find the length of AD in terms of b and c. Solution:

In the given figure,
ABC is a triangle, $\angle \mathrm{A}=90^{\circ}$
$\mathrm{AB}=c, \mathrm{AC}=b$
$\mathrm{AD} \perp \mathrm{BC}$
To find : AD in terms of b and c
Solution : Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \times \mathrm{AC}=$
$\frac{1}{2} b c$
and $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{BC} \times \mathrm{AD}$
But $\mathrm{BC}=\sqrt{\mathrm{AB}^{2}+\mathrm{AC}^{2}}=\sqrt{c^{2}+b^{2}}$
$=\sqrt{b^{2}+c^{2}}$
From (i) and (ii),

$$
\begin{aligned}
& \frac{1}{2} \mathrm{BC} \times \mathrm{AD}=\frac{1}{2} b c \Rightarrow \mathrm{BC} \times \mathrm{AD}=b . c \\
\Rightarrow & \sqrt{b^{2}+c^{2}} \times \mathrm{AD}=b c \\
& \text { Hence } \mathrm{AD}=\frac{b c}{\sqrt{b^{2}+c^{2}}}
\end{aligned}
$$

Question 7.
$A B C D$ is a square, F is mid-point of $A B$ and $B E$ is one-third of $B C$. If area of $\triangle F B E$ is $108 \mathrm{~cm}^{2}$, find the length of AC.
Solution:

Given: In square $A B C D . F$ is mid piont of
AB and $\mathrm{BE}=\frac{1}{3} \mathrm{BC}$
Area of $\triangle \mathrm{FBE}=108 \mathrm{~cm}^{2}$
$A C$ and $E F$ are joined

To find : AC
Solution : Let each side of square is $=a$
$\mathrm{FB}=\frac{1}{2} \mathrm{AB}$
(F is mid point of AB)
$=\frac{1}{2} a$
and $\mathrm{BE}=\frac{1}{3} \mathrm{BC}=\frac{1}{3} a$
Now in square $A B C D$
$\mathrm{AC}=\sqrt{2} \times$ Side $=\sqrt{2} a$
and area $\triangle \mathrm{FBE}=\frac{1}{2} \mathrm{FB} \times \mathrm{BE}$
$=\frac{1}{2} \times \frac{1}{2} a \times \frac{1}{3} a=\frac{1}{12} a^{2}$

$$
\begin{aligned}
& \therefore \frac{1}{12} a^{2}=108 \Rightarrow a^{2}=12 \times 108=1296 \\
& \Rightarrow a=\sqrt{1296}=36 \\
& \therefore \mathrm{AC}=\sqrt{2} a=\sqrt{2} \times 36=36 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

Question 8.
In a triangle $A B C, A B=A C$ and D is a point on side $A C$ such that $B C^{2}=A C \times C D$, Prove that $\mathrm{BD}=\mathrm{BC}$.

Solution:
Given. In a triangle $\mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$ and D is point on side $A C$ such that $B^{2}=A C \times C D$
To prove. $\mathrm{BD}=\mathrm{BC}$

Construction. Draw $\mathrm{BE} \perp \mathrm{AC}$
Proof. In right angled $\triangle B C E$

$$
\mathrm{BC}^{2}=\mathrm{BE}^{2}+\mathrm{EC}^{2} \quad(\mathrm{By} \text { Pythagoras theorem })
$$

$=\mathrm{BE}^{2}+(\mathrm{AC}-\mathrm{AE})^{2}$
$=\mathrm{BE}^{2}+\mathrm{AC}^{2}+\mathrm{AE}^{2}-2 \mathrm{AC} \cdot \mathrm{AE}$
$=\left(\mathrm{BE}^{2}+\mathrm{AE}^{2}\right)+\mathrm{AC}^{2}-2 \mathrm{AC} \cdot \mathrm{AE}$
$=A B^{2}+A C^{2}-2 A C \cdot A E$
(In rt. $\angle \mathrm{ed} \triangle \mathrm{ABC}, \mathrm{AB}^{2}=\mathrm{BE}^{2}+\mathrm{AE}^{2}$)
$=A C^{2}+A C^{2}-2 A C \cdot A E \quad$ (given $A B=A C$)
$=2 \mathrm{AC}^{2}-2 \mathrm{AC} \cdot \mathrm{AE}=2 \mathrm{AC}(\mathrm{AC}-\mathrm{AE})$
$=2 \mathrm{AC} \cdot \mathrm{EC}$
But $\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}$
(given)
$\Rightarrow A C \times C D=2 A C . E C \Rightarrow C D=2 E C$
$\therefore E$ is mid-points of $C D \Rightarrow E C=D E$
Now, in $\triangle B E D$ and $\triangle B E C$
$\mathrm{EC}=\mathrm{DE}$
(above proved)
$B E=B E$
$\angle \mathrm{BED}=\angle \mathrm{BEC}$
(common)
$\therefore \quad \triangle \mathrm{BED} \cong \triangle \mathrm{BEC}$
(By S.A.S. axiom of congruency)
$\therefore \mathrm{BD}=\mathrm{BC}$
(c.p.c.t.)

Hence, the result.

