Triangles

Question 1.
It is given that $\triangle A B C \cong \triangle R P Q$. Is it true to say that $B C=Q R ?$ Why?
Solution:

$$
\triangle \mathrm{ABC} \cong \triangle \mathrm{RPQ}
$$

\therefore Their corresponding sides and angles are equal

$\therefore B C=P Q$
\therefore It is not true to say that $\mathrm{BC}=\mathrm{QR}$

Question 2.

"If two sides and an angle of one triangle are equal to two sides and an angle of another triangle, then the two triangles must be congruent." Is the statement true? Why?
Solution:
No, it is not true statement as the angles should be included angle of there two given sides.

Question 3.

In the given figure, $A B=A C$ and $A P=A Q$. Prove that
(i) $\triangle \mathrm{APC} \cong \triangle \mathrm{AQB}$
(ii) $C P=B Q$
(iii) $\angle A P C=\angle A Q B$.

Solution:

Given : In the figure, $\mathrm{AB}=\mathrm{AC}, \mathrm{AP}=\mathrm{AQ}$
To prove :
(i) $\triangle \mathrm{APC} \cong \triangle \mathrm{AQB} \quad$ (ii) $\mathrm{CP}=\mathrm{BQ}$
(iii) $\angle \mathrm{APC}=\angle \mathrm{AQB}$

Proof: In $\triangle A P C$ and $\triangle A Q B$
$A C=A B$
$A P=A Q$
$\angle A=\angle A$
(i) $\because \triangle \mathrm{APC} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BQ}=\mathrm{CP}$
(iii) $\angle \mathrm{APC}=\angle \mathrm{AQB}$
(Given)
(Given)
(Common)
(SAS axiom)
(c.p.c.t.)
(c.p.c.t.)

Question 4.
In the given figure, $A B=A C, P$ and Q are points on $B A$ and $C A$ respectively such that $A P=A Q$. Prove that
(i) $\triangle \mathrm{APC} \cong \triangle \mathrm{AQB}$
(ii) $C P=B Q$
(iii) $\angle A C P=\angle A B Q$.

Solution:

Given : In the given figure, $\mathrm{AB}=\mathrm{AC}$
P and Q are point on BA and CA produced respectively such that $A P=A Q$

To prove: $(i) \triangle \mathrm{APC} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{CP}=\mathrm{BQ}$
(iii) $\angle \mathrm{ACP}=\angle \mathrm{ABQ}$

Proof: In $\triangle A P C$ and $\triangle A Q B$
$A C=A B$
(Given)
$A P=A Q$
(Given)
$\angle \mathrm{PAC}=\angle \mathrm{QAB}$ (Vertically opposite angle)
(i) $\therefore \triangle \mathrm{APC} \cong \triangle \mathrm{BQP}$
(SAS axiom)
$\therefore \mathrm{CP}=\mathrm{BQ}$
(c.p.c.t.)
$\angle A C P=\angle A B Q$
(c.p.c.t.)

Question 5.
In the given figure, $A D=B C$ and $B D=A C$. Prove that :
$\angle A D B=\angle B C A$ and $\angle D A B=\angle C B A$.

Solution:
Given: In the figure, $A D=B C, B D=A C$

To prove :
(i) $\angle \mathrm{ADB}=\angle \mathrm{BCA}$
(ii) $\angle \mathrm{DAB}=\angle \mathrm{CBA}$

Proof: In $\triangle A D B$ and $\triangle A C B$
$A B=A B$
$\mathrm{AD}=\mathrm{BC}$
$\mathrm{DB}=\mathrm{AC}$
$\therefore \triangle \mathrm{ADB} \cong \triangle \mathrm{ACD}$
$\therefore \angle \mathrm{ADB}=\angle \mathrm{BCA}$
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$

Question 6.
In the given figure, $A B C D$ is a quadrilateral in which $A D=B C$ and $\angle D A B=\angle C B A$. Prove that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
(ii) $B D=A C$
(iii) $\angle A B D=\angle B A C$.

Solution:
Given : In the figure ABCD is a quadrilateral in which $\mathrm{AD}=\mathrm{BC}$
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$

To prove :
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC} \quad$ (ii) $\mathrm{BD}=\mathrm{AC}$
(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$

Proof : In $\triangle A B D$ and $\triangle A B C$
$\mathrm{AB}=\mathrm{AB}$
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$
$A D=B C$
(i) $\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ABC}$
(ii) $\therefore \mathrm{BD}=\mathrm{AC}$
(iii) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$
(Given)
(Given)
(SAS axiom)
(c.p.c.t.)
(c.p.c.t.)

Question 7.
In the given figure, $A B=D C$ and $A B|\mid D C$. Prove that $A D=B C$.
Solution:

Given : In the given figure,
$A B=D C C, A B \| D C$
To pove : $A D=B C$
Proof : $\because A B \| D C$
$\therefore \angle \mathrm{ABD}=\angle \mathrm{CDB}$
(Alternate angles)
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDB}$

$$
\mathrm{AB}=\mathrm{DC} \quad, \text { (Given) }
$$

$$
\angle \mathrm{ABD}=\angle \mathrm{CDB}
$$

(Alternate angles)
$B D=B D$
(Common)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$ (SAS axiom)
$\therefore \mathrm{AD}=\mathrm{BC}$
(c.p.c.t.)

Question 8.
In the given figure. $A C=A E, A B=A D$ and $\angle B A D=\angle C A E$. Show that $B C=D E$.

Solution:

Given: In the figure, $\mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD}$
$\angle \mathrm{BAD}=\angle \mathrm{CAE}$
To prove : $\mathrm{BC}=\mathrm{DE}$
Construction : Join DE.

Proof: In. $\triangle A B C$ and $\triangle A D E$
$\mathrm{AB}=\mathrm{AD}$ (given)
$\mathrm{AC}=\mathrm{AE}$
(given)
$\angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{DAC}+\angle \mathrm{CAE}$
$\Rightarrow \angle \mathrm{BAC}=\angle \mathrm{DAE}$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{ADE}$
(SAS axiom)
$\therefore B C=D E$

Question 9.
In the adjoining figure, $A B=C D, C E=B F$ and $\angle A C E=\angle D B F$. Prove that (i) $\triangle \mathrm{ACE} \cong \triangle \mathrm{DBF}$
(ii) $A E=D F$.

Solution:
Given : In the given figure.
$\mathrm{AB}=\mathrm{CD}$
$\mathrm{CE}=\mathrm{BF}$
$\angle \mathrm{ACE}=\angle \mathrm{DBF}$

To prove : (i) $\triangle \mathrm{ACE} \cong \triangle \mathrm{DBF}$
(ii) $\mathrm{AE}=\mathrm{DF}$

Proof: $\because \mathrm{AB}=\mathrm{CD}$
Adding BC to both sides
$A B+B C=B C+C D$
$\Rightarrow \mathrm{AC}=\mathrm{BD}$
Now in $\triangle A C E$ and $\triangle D B F$
$\mathrm{AC}=\mathrm{BD}$
$C E=B F$
$\angle \mathrm{ACE}=\angle \mathrm{DBF}$
(i) $\therefore \triangle \mathrm{ACE} \cong \triangle \mathrm{DBF}$
$\therefore \mathrm{AE}=\mathrm{DE}$
(Proved)
(Given)
(Given)
(SAS axiom)
(c.p.c.t.)

Question 10.

In the given figure, $A B=A C$ and D is mid-point of $B C$. Use $S S S$ rule of congruency to show that
(i) $\triangle A B D \cong \triangle A C D$
(ii) $A D$ is bisector of $\angle A$
(iii) $A D$ is perpendicular to $B C$.

Solution:

Given : In the given figure, $\mathrm{AB}=\mathrm{AC}$
D is mid point of $B C$
$\therefore \mathrm{BD}=\mathrm{DC}$

To prove :
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) AD is bisector of $\angle \mathrm{A}$
(iii) $\mathrm{AD} \perp \mathrm{BC}$

Proof: In $\triangle A B D$ and $\triangle A C D$
$A B=A C$
$B D=D C$
$\mathrm{AD}=\mathrm{AD}$
 (Given)
(Common)
(c.p.c.t.)
(i) $\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\angle \mathrm{BAD}=\angle \mathrm{CAD}$
$\therefore \mathrm{AD}$ is the bisector of $\angle \mathrm{A}$
(iii) $\angle \mathrm{ADB}=\angle \mathrm{ADC}$

$$
\text { But } \angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ} \quad \text { (Linear pair) }
$$

$\therefore \angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$\therefore \mathrm{AD} \perp \mathrm{BC}$
Question 11.
Two line segments $A B$ and $C D$ bisect each other at O. Prove that :
(i) $A C=B D$
(ii) $\angle C A B=\angle A B D$
(iii) $A D \| C B$
(iv) $A D=C B$.

Solution:

$O C=O D \quad[A B$ and $C D$ bisect each other $]$ and $\mathrm{AO}=\mathrm{OB}$
Also, $\angle \mathrm{AOC}=\angle \mathrm{BOD}$ (vertical opposite angles)
$\therefore \triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}$
(By S.A.S. axiom of congruency)
(i) Then $\mathrm{AC}=\mathrm{BD}$
(c.p.c.t.)
(ii) Also $\angle \mathrm{CAO}=\angle \mathrm{DBO}$
(c.p.c.t.)
i.e. $\angle \mathrm{CAB}=\angle \mathrm{ABD}$
$[\because \angle \mathrm{CAO}=\angle \mathrm{CAB}$ and $\angle \mathrm{DBO}=\angle \mathrm{ABD}]$
(iii) We have in (ii) part
$\angle \mathrm{CAB}=\angle \mathrm{ABD}$
But these are Alternate angles
Hence, $A D \| C D$
(iv) In $\triangle A O D$ and $\triangle B O C$
$\mathrm{OC}=\mathrm{OD}$ and $\mathrm{BO}=\mathrm{AO}$
(AB and CD bisect each other)
and $\angle B O C=\angle A O D$
(vertical opposite angles)
$\therefore \triangle \mathrm{AOD} \cong \triangle B O C$
[By S.A.S. axiom of congruency]
Then, $\mathrm{AD}=\mathrm{BC}$
(c.p.c.t.)
or $\quad \mathrm{AD}=\mathrm{CB}$
(Q.E.D.)

Question 12.
In each of the following diagrams, find the values of x and y.

Solution:

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BCD}$,
$A B=B C$
$A D=C D$
$\mathrm{BD}=\mathrm{BD}$
(given)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{BCD}$
(By S.S.S axiom of congruency)
$\begin{array}{ll}\therefore \angle \mathrm{ABD}=\angle \mathrm{CBD} & \text { (c.p.c.t.) } \\ \Rightarrow \quad y+5=46 \Rightarrow \quad y=46-5 \Rightarrow y=\end{array}$
41
Also $\angle \mathrm{ADB}=\angle \mathrm{BDC}$ (c.p.c.t.)
$\Rightarrow 35^{\circ}=(2 x+5)^{\circ} \Rightarrow 35=2 x+5$
$\Rightarrow \quad 2 x+5=35 \quad \Rightarrow \quad 2 x=35-5 \quad \Rightarrow$
$2 x=30$
$\Rightarrow x=\frac{30}{2} \Rightarrow x=15$

Exercise 10.2

Question 1.

In triangles $A B C$ and $P Q R, \angle A=\angle Q$ and $\angle B=\angle R$. Which side of $A P Q R$ should be equal to side $A B$ of $A A B C$ so that the two triangles are congruent? Give reason for your answer.
Solution:
In $\triangle A B C$ and $\triangle P Q R$

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{Q} \\
& \angle \mathrm{~B}=\angle \mathrm{R}
\end{aligned}
$$

$$
\mathrm{AB}=\mathrm{QP}
$$

\because Two Δs are congruent of their corresponding two angles and included sides are equal

Question 2.

In triangles $A B C$ and $P Q R, \angle A=\angle Q$ and $\angle B=\angle R$. Which side of $A P Q R$ should be equal to side $B C$ of $A A B C$ so that the two triangles are congruent? Give reason for your answer.
Solution:
In $\triangle A B C$ and $\triangle P Q R$

$$
\angle \mathrm{A}=\angle \mathrm{Q}
$$

$$
\angle \mathrm{B}=\angle \mathrm{R}
$$

and their included sides $A B$ and $Q R$ will be equal for their congruency
$\therefore \mathrm{BC}=\mathrm{PR}$

Question 3.
"If two angles and a side of one triangle are equal to two angles and a side of another triangle, then the two triangles must be congruent". Is the statement true? Why?
Solution:
The given statement can be true only if the corresponding (included) sides are equal otherwise not.

Question 4.

In the given figure, $A D$ is median of $\triangle A B C, B M$ and $C N$ are perpendiculars drawn from B and C respectively on $A D$ and $A D$ produced. Prove that $B M=C N$.
Solution:

Given : ln $\triangle \mathrm{ABC}, \mathrm{AD}$ is median BM and CN are perpendicular to AD form B and C respectively
To prove : $\mathrm{BM}=\mathrm{CN}$
Proof : $\ln \triangle \mathrm{BMD}$ and $\triangle \mathrm{CND}$
$\mathrm{BD}=\mathrm{CD}$
$\angle \mathrm{M}=\angle \mathrm{N}$

$$
\angle \mathrm{BDM}=\angle \mathrm{CDN}
$$

(Vertically opposite angles)
$\therefore \triangle \mathrm{BMD} \cong \triangle \mathrm{CND}$
(AAS axiom)
$\therefore \mathrm{BM}=\mathrm{CN}$
(c.p.c.t.)

Question 5.

In the given figure, BM and DN are perpendiculars to the line segment AC. If BM = DN, prove that AC bisects BD.

Solution:
Given : In the figure, BM and DN are perpendicular to AC
$\mathrm{BM}=\mathrm{DN}$
To prove : AC bisects BD i.e., $\mathrm{BE}=\mathrm{ED}$
Construction : Join BD which intersects AC at E

Proof: In $\triangle \mathrm{BEM}$ and $\triangle \mathrm{DEN}$
$\mathrm{BM}=\mathrm{DN}$
$\angle \mathrm{M}=\angle \mathrm{N}$
$\angle \mathrm{DEN}=\angle \mathrm{BEM}$
(Vertically opposite angles)
$\therefore \triangle \mathrm{BEM} \cong \triangle \mathrm{DEN}$
(AAS axiom)
$\therefore \mathrm{BE}=\mathrm{ED}$
$\Rightarrow A C$ bisects $B D$

Question 6.
In the given figure, I and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\triangle A B C \cong \triangle C D A$.

Solution:
In the given figure, two lines l and m are parallel to each other and lines p and q are also a pair of parallel lines intersecting each othat at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D} . \mathrm{AC}$ is joined.
To prove : $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$
Proof: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$
$\mathrm{AC}=\mathrm{AC}$
(Common)
$\angle \mathrm{ACB}=\angle \mathrm{CAD}$
$\angle \mathrm{BAC}=\angle \mathrm{ACD}$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DCA}$
(Alternate angles)
(Alternate angles)
(ASA axiom)

Question 7.

In the given figure, two lines $A B$ and $C D$ intersect each other at the point O such that $B C|\mid D A$ and $B C=D A$. Show that O is the mid-point of both the line segments $A B$ and $C D$.

Solution:

Given : In the given figure, lines $A B$ and $C D$ intersect each other at O such that $B C \| A D$ and $\mathrm{BC}=\mathrm{DA}$

To prove : O is the mid point of $A B$ and $C D$
Proof: $\triangle A O D$ and $\triangle B O C$
$\mathrm{AD}=\mathrm{BC}$
$\angle \mathrm{OAD}=\angle \mathrm{OBC}$
$\angle \mathrm{ODA}=\angle \mathrm{OCB}$
$\therefore \triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$
$\therefore \mathrm{OA}=\mathrm{OB}$ and $\mathrm{OD}=\mathrm{OC}$
$\therefore \mathrm{O}$ is the mid-point of AB and CD

Question 8.
In the given figure, $\angle B C D=\angle A D C$ and $\angle B C A=\angle A D B$. Show that
(i) $\triangle \mathrm{ACD} \cong \triangle \mathrm{BDC}$
(ii) $B C=A D$
(iii) $\angle A=\angle B$.

Solution:
Given : In the given figure,
$\angle \mathrm{BCD}=\angle \mathrm{ADC}$
$\angle \mathrm{BCA}=\angle \mathrm{ADB}$

To prove :
(i) $\triangle \mathrm{ACD} \cong \triangle \mathrm{BDC} \quad$ (ii) $\mathrm{BC}=\mathrm{AD}$
(iii) $\angle \mathrm{A}=\angle \mathrm{B}$

Proof: $\because \angle \mathrm{BCA}=\angle \mathrm{ADB}$
and $\angle \mathrm{BCD}=\angle \mathrm{ADC}$
Adding we get,
$\angle \mathrm{BCA}+\angle \mathrm{BCD}=\angle \mathrm{ADB}+\angle \mathrm{ADC}$
$\Rightarrow \angle \mathrm{ACD}=\angle \mathrm{BDC}$
Now in $\triangle A C D$ and $\triangle B D C$
$C D=C D$
$\angle \mathrm{ACD}=\angle \mathrm{BDC}$
$\angle \mathrm{ADC}=\angle \mathrm{BCD}$
(i) $\therefore \triangle \mathrm{ACD} \cong \triangle \mathrm{BDC}$

$$
\begin{aligned}
\therefore \mathrm{AD} & =\mathrm{BC} \\
\angle \mathrm{~A} & =\angle \mathrm{B}
\end{aligned}
$$

(Common)
(Proved)
(Giyen)
(ASA axiom)
(c.p.c.t.)
(c.p.c.t.)

Question 9.
In the given figure, $\angle A B C=\angle A C B, D$ and E are points on the sides $A C$ and $A B$ respectively such that $B E=C D$. Prove that
(i) $\triangle \mathrm{EBC} \cong \triangle \mathrm{DCB}$
(ii) $\triangle O E B \cong \triangle O D C$
(iii) $\mathrm{OB}=\mathrm{OC}$.

Solution:
Given : In the given figure,
$\angle \mathrm{ABC}=\angle \mathrm{ACB}$
D and E are the points on $A C$ and $A B$ such

To prove : $(i) \Delta \mathrm{EBC} \cong \triangle \mathrm{DCB}$
(ii) $\triangle \mathrm{OEB} \cong \triangle \mathrm{ODC}$
(iii) $\mathrm{OB}=\mathrm{OC}$

Proof: In $\triangle A B C$,
$\because \angle \mathrm{ABC}=\angle \mathrm{ACB}$
$\therefore \mathrm{AC}=\mathrm{AB} \quad$ (Sides opposite to equal angles) In $\triangle E B C$ and $\triangle D C B$,
$\mathrm{EB}=\mathrm{DC}$
(Given)
$B C=B C$
(Common)
$\angle \mathrm{CBD}=\angle \mathrm{DCB}$
$(\because \angle \mathrm{ABC}=$ $\angle \mathrm{ACB}$)
(i) $\because \triangle \mathrm{EBC} \cong \triangle \mathrm{DCB}$
(SAS axiom)
$\angle \mathrm{ECB}=\angle \mathrm{DBC}$
(c.p.c.t.)

Now in $\triangle \mathrm{OEB}$ and $\triangle \mathrm{ODC}$
$\mathrm{BE}=\mathrm{CD}$
(Given)
$\angle \mathrm{EBO}=\angle \mathrm{DCO}$
$\{\because \angle \mathrm{ABC}-\angle \mathrm{DBC}=\angle \mathrm{ACB}-\angle \mathrm{OCB}\}$
$\angle \mathrm{EOB}=\angle \mathrm{DOC}$
(ii) $\therefore \triangle \mathrm{OEB} \cong \triangle \mathrm{ODC}$
(iii) $\therefore \mathrm{OB}=\mathrm{OC}$
(AAS axiom)
(c.p.c.t.)

Question 10.
$A B C$ is an isosceles triangle with $A B=A C$. Draw $A P \perp B C$ to show that $\angle B=\angle C$. Solution:
Given : $\triangle \mathrm{ABC}$ is an isosceles triangle with
$\mathrm{AB}=\mathrm{AC}$
$\mathrm{AP} \perp \mathrm{BC}$
To prove : $\angle \mathrm{B}=\angle \mathrm{C}$
Proof : In right $\triangle \mathrm{APB}$ and $\triangle \mathrm{APC}$
Side AP = AP
(Common)

Hyp. $\mathrm{AB}=\mathrm{AC}$
$\therefore \triangle \mathrm{APB} \cong \triangle \mathrm{APC}$
(Given)
(RHS axiom)
$\therefore \angle \mathrm{B}=\angle \mathrm{C}$

Question 11.
In the given figure, $B A \perp A C, D E \perp D F$ such that $B A=D E$ and $B F=E C$.

Solution:
Given : In the given figure,
$\mathrm{BA} \perp \mathrm{AC}, \mathrm{DE} \perp \mathrm{DF}$
$\mathrm{BA}=\mathrm{DE}, \mathrm{BF}=\mathrm{EC}$

To prove : $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Proof: : $\because \mathrm{BF}=\mathrm{CE}$
Adding FC both sides
$\mathrm{BF}+\mathrm{FC}=\mathrm{FC}+\mathrm{CE}$
$\Rightarrow \mathrm{BC}=\mathrm{EF}$
Now in right $\triangle A B C$ and $\triangle D E F$
Side $A B=D E$
Hyp. $B C=E F$
(Given)
(Proved)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

Question 12.

$A B C D$ is a rectanige. X and Y are points on sides $A D$ and $B C$ respectively such that $A Y=B X$. Prove that $B Y=A X$ and $\angle B A Y=\angle A B X$.
Solution:
Given : In rectangle $A B C D, X$ and Y are points on the sides $A D$ and $B C$ respectively such that $\mathrm{AY}=\mathrm{BX}$

To prove : $\mathrm{BY}=\mathrm{AX}$ and $\angle \mathrm{BAY}=\angle \mathrm{ABX}$
Proof: In $\triangle A B X$ and $\triangle A B Y$
$A B=A B$
$\angle A=\angle B$
(Common)
$\mathrm{BX}=\mathrm{AY}$
(Each 90°)
(Given)
$\therefore \triangle A B X \cong \triangle A B Y$
$A X=B Y$
or BY AX
and $\angle \mathrm{AXB}=\angle \mathrm{BYA}$
(c.p.c.t.)

Question 13.

(a) In the figure (1) given below, QX, RX are bisectors of angles PQR and PRQ respectively of $A P Q R$. If $X S \perp Q R$ and $X T \perp P Q$, prove that
(i) $\triangle \mathrm{XTQ} \cong \triangle \mathrm{XSQ}$
(ii) $P X$ bisects the angle P.
(b) In the figure (2) given below, $A B|\mid D C$ and $\angle C=\angle D$. Prove that
(i) $A D=B C$
(ii) $A C=B D$.
(c) In the figure (3) given below, BA || DF and CA II EG and BD = EC . Prove that, .
(i) $B G=D F$
(ii) $E G=C F$.

 $0^{2} 0^{2} \mathrm{c}^{2} \mathrm{~F}$

：至exter

由18

ma 模

 caccoud

苟Acmany

$$
\left[\begin{array}{r}
\angle \mathrm{XTP}=90^{\circ} \text { (given) } \\
\angle \mathrm{XTP}=90^{\circ}(\text { construction })
\end{array}\right]
$$

(hyp) $X P=$ (hyp) $X P$
(common
$\mathrm{XT}=\mathrm{XZ}$
[From (3)
$\therefore \quad \triangle \mathrm{XTP} \cong \triangle \mathrm{XZP}$
[By R.H.S. axiom of congruency
$\therefore \angle \mathrm{XPT}=\angle \mathrm{XPZ}$
(c.p.c.t.
$\therefore \mathrm{PX}$ bisects the angle P .
(Q.E.D.
(b) In following figure

Given. $\mathrm{AB} \| \mathrm{DC}$ and $\angle \mathrm{C}=\angle \mathrm{D}$
To prove. (i) $\mathrm{AD}=\mathrm{BC}$
(ii) $\mathrm{AC}=\mathrm{BD}$

(2)

Construction. Draw $\mathrm{AE} \perp \mathrm{CD}, \mathrm{BF} \perp \mathrm{CD}$ an join A to C and B to D.
Proof. (i) In $\triangle \mathrm{AED}$ and $\triangle \mathrm{BCF}$
$\angle \mathrm{AED}=\angle \mathrm{BFC} \quad$ (each 90°
[By construction $\mathrm{AE} \perp \mathrm{CD}$ and $\mathrm{BF} \perp \mathrm{CD}$]
$\angle \mathrm{D}=\angle \mathrm{C}$
(giver:
$\mathrm{AE}=\mathrm{BF}$
[Distance between parallel lines are same]
$\therefore \triangle \mathrm{AED} \cong \triangle \mathrm{BCF}$
(By A.A.S. axiom of congruency
$\mathrm{AD}=\mathrm{BC} \quad$ (c.p.c.t.)
(ii) In $\triangle A C D$ and $\triangle B C D$
$\angle \mathrm{D}=\angle \mathrm{C}$
$D C=D C$
$\mathrm{AD}=\mathrm{BC}$
$\therefore \triangle \mathrm{ACD} \cong \triangle \mathrm{BCD}$
(By S.A.S. axiom of congruency
$\therefore \quad \mathrm{AC}=\mathrm{BD}$
(c.p.c.t.)
(Q.E.D.
(c) In following figure

Given. $\mathrm{BA} \| \mathrm{DF}$ and $\mathrm{CA} \| \mathrm{EG}$ and $\mathrm{BD}=\mathrm{EC}$
To prove. (i) $\mathrm{BG}=\mathrm{DF}$
(ii) $\mathrm{EG}=\mathrm{CF}$
-

(3)

Proof. (i) In $\triangle B E G$ and $\triangle D C F$

$$
\angle \mathrm{B}=\frac{\angle \mathrm{D}}{(\because \mathrm{BA} \| \mathrm{DF}, \text { corresponding angles equal })}
$$

$\angle \mathrm{E}=\angle \mathrm{C}$
($\because \mathrm{CA}|\mid \mathrm{EG}$ corresponding angles equal)
and $\mathrm{BE}=\mathrm{BC}-\mathrm{EC}=\mathrm{BC}-\mathrm{BD}=\mathrm{DC}$
i.e. $B E=D C$
$\therefore \quad \triangle \mathrm{BEG} \cong \triangle \mathrm{DCF}$
(By A.S.A. axiom of congruency)
$\therefore \quad \mathrm{BG}=\mathrm{DF} \quad$ (c.p.c.t.)
(iii) $\mathrm{EG}=\mathrm{CF}$ (c.p.c.t.)
(Q.E.D.)

Question 14.
In each of the following diagrams, find the values of x and y.

(i)

(ii)

Solution：

嘫

的

紱上的絰

		700 管

Exercise 10.3

Question 1

$A B C$ is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$ ．Find $\angle B$ and $\angle C$ ．
In right $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$
$\therefore \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}-\angle \mathrm{A}$
$=180^{\circ}-90^{\circ}=90^{\circ}$

$\because A B=A C$
$\therefore \angle \mathrm{C}=\angle \mathrm{B} \quad$（Angles opposite to equal sides）
$\therefore \angle \mathrm{B}+\angle \mathrm{B}=90^{\circ} \Rightarrow 2 \angle \mathrm{~B}=90^{\circ}$
$\therefore \angle \mathrm{B}=\frac{90^{\circ}}{2}=45^{\circ}$
$\therefore \angle B=\angle C=45^{\circ}$

Solution:

Question 2.
Show that the angles of an equilateral triangle are 60° each.
Solution:
$\triangle A B C$ is an equilateral triangle
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C} \quad$ (Opposite to equal sides)
But $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Sum of angls of a triangle)
$\therefore \angle \mathrm{A}+\angle \mathrm{A}+\angle \mathrm{A}=180^{\circ}$
$\Rightarrow 3 \angle \mathrm{~A}=180^{\circ} \Rightarrow \angle \mathrm{A}=\frac{180^{\circ}}{3}=60^{\circ}$
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$

Question 3.
Show that every equiangular triangle is equilateral. Solution:
$\triangle A B C$ is an equaiangular

$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}$
In $\triangle \mathrm{ABC}$
$\because \angle B=\angle C$
$\therefore \mathrm{AC}=\mathrm{AB} \quad$ (Sides opposite to equal angles)

Similarly, $\angle \mathrm{C}=\angle \mathrm{A}$
$\therefore \mathrm{BC}=\mathrm{AB}$
From (i) and (ii)
$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle

Question 4.
In the following diagrams, find the value of x :

Solution:
(iII)
(i) In following diagram given that $\mathrm{AB}=$ AC
i.e. $\angle \mathrm{B}=\angle \mathrm{ACB}$ (angles opposite to equal sides in a triangles are equal)
Now, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{ACB}=180^{\circ}$
(sum of all angles in a triangle is 180°)

(i)

$$
\begin{array}{ll}
\Rightarrow & 50^{\circ}+\angle \mathrm{B}+\angle \mathrm{B}=180^{\circ} \\
& \quad\left[\therefore \angle \mathrm{A}=50^{\circ} \text { (given) } \angle \mathrm{B}=\angle \mathrm{ACB}\right] \\
\Rightarrow & 50^{\circ}+2 \angle \mathrm{~B}=180^{\circ} \Rightarrow 2 \angle \mathrm{~B}=180^{\circ}-50^{\circ} \\
\Rightarrow & 2 \angle \mathrm{~B}=130^{\circ} \Rightarrow \quad \angle \mathrm{B}=\frac{130}{2}=65^{\circ} \\
\therefore & \angle \mathrm{ACB}=65^{\circ}
\end{array}
$$

$$
\begin{equation*}
\text { Also, } \angle \mathrm{ACB}+x^{\circ}=180^{\circ} \tag{Linearpair}
\end{equation*}
$$

$$
65^{\circ}+x^{\circ}=180^{\circ} \Rightarrow x^{\circ}=180^{\circ}-65^{\circ}
$$

$$
\Rightarrow \quad x^{\circ}=115^{\circ}
$$

Hence, value of $x=115$
(ii) In \triangle PRS,

Given that $P R=R S$
$\therefore \angle \mathrm{PSR}=\angle \mathrm{RPS}$
(angles opposite in a triangle, equal sides are equal)

$\Rightarrow 30^{\circ}=\angle \mathrm{RPS} \Rightarrow \angle \mathrm{RPS}=30^{\circ} \quad \ldots$ (1)
$\angle \mathrm{QPS}=\angle \mathrm{QPR}+\angle \mathrm{RPS}$
$\Rightarrow \quad \angle \mathrm{QPS}=52^{\circ}+30^{\circ}$
(Given, $\angle \mathrm{QPR}=52^{\circ}$ and from (1), $\angle \mathrm{RPS}=30^{\circ}$)
$\Rightarrow \quad \angle \mathrm{QPS}=82^{\circ}$
Now, in $\triangle \mathrm{PQS}$
$\angle \mathrm{QPS}+\angle \mathrm{QSP}+\mathrm{PQS}=180^{\circ}$
(sum of all angles in a triangles is 180°)
$\Rightarrow 82^{\circ}+30^{\circ}+x^{\circ}=180^{\circ}$
[From (2) $\angle \mathrm{QPS}=82^{\circ}$ and $\angle \mathrm{QSP}=30^{\circ}$ (given)]
$\Rightarrow 112^{\circ}+x^{\circ}=180^{\circ} \Rightarrow x^{\circ}=180^{\circ}-112^{\circ}$
Hence, value of $x=68$ Ans.
(iii) In the following figure, Given that, $\mathrm{BD}=\mathrm{CD}=\mathrm{AC}$ and $\angle \mathrm{DBC}=27^{\circ}$
Now, in $\triangle B C D$
$\mathrm{BD}=\mathrm{CD}$ (given)
$\angle \mathrm{DBC}=\angle \mathrm{BCD}$

(In a triangle sides opposite equal angles are equal)
Also, $\angle \mathrm{DBC}=27^{\circ} \quad$ (given)
From (1) and (2), we get
$\angle \mathrm{BCD}=27^{\circ}$
Now, ext. $\angle \mathrm{CDA}=\angle \mathrm{DBC}+\angle \mathrm{BCD}$
[exterior angle is equal to sum of two interior opposite angles]
$\begin{array}{lr}\Rightarrow \quad \text { ext. } \angle \mathrm{CDA}=27^{\circ}+27^{\circ} & {[\text { From (2) and (3)] }} \\ \Rightarrow \quad \angle \mathrm{CDA}=54^{\circ} & \ldots . . . \text { (4) }\end{array}$
In $\triangle \mathrm{ACD}$,
$\mathrm{AC}=\mathrm{CD}$
(given)
$\angle \mathrm{CAD}=\angle \mathrm{CDA}$ (In a triangle, angles opposite to equal sides are equal)
$\angle \mathrm{CAD}=54^{\circ}$
[From (4)]
Also, in $\triangle \mathrm{ACD}$
$\angle \mathrm{CAD}+\angle \mathrm{CDA}+\angle \mathrm{ACD}=180^{\circ}$
(sum of all angles in a triangle is 180°)
$\Rightarrow 54^{\circ}+54^{\circ}+y=180^{\circ}$. [From (4) and (5)]
$\Rightarrow 108^{\circ}+y=180^{\circ} \Rightarrow y=180^{\circ}-108^{\circ}$
$\Rightarrow \quad y=72^{\circ}$
Hence, value of $y=72^{\circ}$

Question 5.
In the following diagrams, find the value of x :

(ii)

Solution:
(i) In the following figure,

Given. In $\triangle \mathrm{ABC}$,

$A D=B D=C D$.
$\angle \mathrm{B}=48^{\circ}, \angle \mathrm{DAC}=x^{\circ}$
Now, in $\triangle \mathrm{ABD}$
$\mathrm{BD}=\mathrm{AD}$
$\angle \mathrm{BAD}=\angle \mathrm{B}$
(given)
(angles opposite equal sides in a triangle are
equal).
$\angle \mathrm{B}=48^{\circ}$
Now, in $\triangle A B D$
From (1) and (2) $\angle \mathrm{BAD}=48^{\circ}$
(3)

Exterior $\angle \mathrm{ADC}=\angle \mathrm{B}+\angle \mathrm{BAD}$
(In a triangle exterior angle is equal to sum of two interior opposite angles)
$\angle \mathrm{ADC}=48^{\circ}+48^{\circ} \Rightarrow \angle \mathrm{ADC}=96^{\circ}$
Now, in $\triangle \mathrm{ADC}$
$\mathrm{AD}=\mathrm{DC}$
(given)
$\therefore \quad \angle \mathrm{C}=\angle \mathrm{DAC}$
(In a triangle, angles opposite equal sides are equal)
$\angle \mathrm{DAC}=x^{\circ}$ (given)
From (5) and (6)

$$
\begin{equation*}
\angle \mathrm{C}=x^{\circ} \tag{7}
\end{equation*}
$$

Now, in $\triangle \mathrm{ADC}$
$\angle \mathrm{C}+\angle \mathrm{ADC}+\angle \mathrm{DAC}=180^{\circ}$
(sum of all the angles in a triangle is 180°)
$\Rightarrow x^{\circ}+96^{\circ}+x^{\circ}=180^{\circ} \quad$ [From 4, 6 and 7]
$\Rightarrow 2 x^{\circ}=180^{\circ}-96^{\circ} \Rightarrow 2 x^{\circ}=\frac{84}{2} \Rightarrow x^{\circ}=$ 42°
Hence, value of $x=42$
(ii) Given in $\triangle \mathrm{ABC}$,

Exterior $\angle \mathrm{ACE}=130^{\circ}$ and $\mathrm{AD}=\mathrm{BD}=\mathrm{DC}$
To calculate the value of x.
Now, $\angle \mathrm{ACD}+\mathrm{ACE}=180^{\circ}$
＊

新金？

\＆e
 Ggex

$$
\begin{equation*}
\text { Anden } \circ 8 \tag{か穖}
\end{equation*}
$$

目家然育

506整然

40

 （295\％

Given that $\mathrm{AC}=\mathrm{CD}, \mathrm{AD}=\mathrm{BD}$
and $\angle \mathrm{BAC}=x^{\circ}, \angle \mathrm{ACD}=56^{\circ}$
o evaluate the value oi x.
jow, in $\triangle \mathrm{ACD}$
${ }_{1} \mathrm{C}=\mathrm{CD} \quad$ (given)
$\angle \mathrm{ADC}=\angle \mathrm{DAC}$
In a triangle, angles opposite to equal sides are qual)
Iso, $\angle \mathrm{ADC}+\angle \mathrm{DAC}+56^{\circ}=180^{\circ}$
(sum of all angles in a triangle is 180°)
$\Rightarrow \quad \angle \mathrm{DAC}+\angle \mathrm{DAC}+56^{\circ}=180^{\circ}$
[From equation (1) $\angle \mathrm{ADC}=\angle \mathrm{DAC}]$
$\Rightarrow \quad 2 \angle \mathrm{DAC}+56^{\circ}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{DAC}=180^{\circ}-56^{\circ} \Rightarrow 2 \angle \mathrm{DAC}=124^{\circ}$
$\Rightarrow \quad \angle \mathrm{DAC}=\frac{124^{\circ}}{2} \Rightarrow \angle \mathrm{DAC}=62^{\circ}$
.e. $\angle \mathrm{ADC}=62^{\circ}$
[From (1) $\angle \mathrm{DAC}=\angle \mathrm{ADC}]$
low, in $\triangle \mathrm{ABD}$
$\mathrm{lD}=\mathrm{BD}$
(given)
$\angle \mathrm{ABD}=\angle \mathrm{BAD}$
In a triangle, angles opposite equal sides are qual)
3ut ext. $\angle \mathrm{ADC}=\angle \mathrm{ABD}+\angle \mathrm{BAD}$
$\Rightarrow \quad 62^{\circ}=\angle \mathrm{BAD}+\angle \mathrm{BAD}$ [From (3) and (4)]
$\Rightarrow 62^{\circ}=2 \angle \mathrm{BAD} \Rightarrow \angle \mathrm{BAD}=62^{\circ}$
$\Rightarrow \angle \mathrm{BAD}=\frac{62^{\circ}}{2} \Rightarrow \angle \mathrm{BAD}=31^{\circ}$.
... (5)
Now, from figure, $x^{\circ}=\angle \mathrm{BAD}+\angle \mathrm{DAC}$
$i^{\circ}=31^{\circ}+62^{\circ} \Rightarrow x^{\circ}=93^{\circ} \quad$ [From (4) and (5)]
fence, value of $x=93$

Question 6.
(a) In the figure (1) given below, $A B=A D, B C=D C$. Find $\angle A B C$.
(b)In the figure (2) given below, $B C=C D$. Find $\angle A C B$.
(c) In the figure (3) given below, $A B\left|\mid C D\right.$ and $C A=C E$. If $\angle A C E=74^{\circ}$ and $\angle B A E$ $=15^{\circ}$, find the values of x and y.
Solution:

(2)

(3)

倝

$\cdots 5$
起置

昷题施？
0．潑

＂

$$
\begin{aligned}
& \text { In } \triangle \mathrm{AEC} \\
& \mathrm{AC}=\mathrm{CE} \\
& \therefore \angle \mathrm{CAE}=\angle \mathrm{CEA} \\
& \mathrm{But} \mathrm{ACE}=74^{\circ} \\
& \therefore \angle \mathrm{CAE}+\angle \mathrm{CEA}=180^{\circ}-74^{\circ}=106^{\circ} \\
& \therefore \angle \mathrm{CAE}=\angle \mathrm{CEA}=\frac{106^{\circ}}{2}=53^{\circ} \\
& \mathrm{Ext.} \angle \mathrm{AEB}=\angle \mathrm{CAE}+\angle \mathrm{ACE} \\
& \Rightarrow x=53^{\circ}+74^{\circ}=127^{\circ} \\
& \because \mathrm{AB} \| \mathrm{CD} \\
& \therefore \angle \mathrm{CAB}+\angle \mathrm{ACD}=180^{\circ} \\
& \quad(\mathrm{Sum} \text { of cointerior angles }) \\
& \Rightarrow 15^{\circ}+53^{\circ}+74^{\circ}+y^{\circ}=180^{\circ} \\
& \Rightarrow 142^{\circ}+y=180^{\circ} \\
& \Rightarrow y=180^{\circ}-142^{\circ}=38^{\circ}
\end{aligned}
$$

Question 7.

In $\triangle A B C, A B=A C, \angle A=(5 x+20)^{\circ}$ and each of the base angle is $\frac{2}{5}$ th of $\angle A$. Find the measure of $\angle A$.

Solution:
Given : In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$

$$
\begin{aligned}
& \angle \mathrm{A}=(5 x+20)^{\circ} \\
& \angle \mathrm{B}=\angle \mathrm{C}=\frac{2}{5}(\angle \mathrm{~A}) \\
& =\frac{2}{5}(5 x+20)^{\circ} \\
& =2(x+4)^{\circ}=2 x+8
\end{aligned}
$$

\therefore But sum of angles of a triangle $=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 5 x+20+2 x+8+2 x+8=180^{\circ}$
$9 x+36=180^{\circ}$
$9 x=180-36=144$
$x=\frac{144}{9}=16$
$\therefore \angle \mathrm{A}=5 x+20=5 \times 16+20$
$=80^{\circ}+20^{\circ}=100^{\circ}$

Question 8.
(a) In the figure (1) given below, $A B C$ is an equilateral triangle. Base $B C$ is produced to E, such that $B C^{\prime}=C E$. Calculate $\angle A C E$ and $\angle A E C$.
(b) In the figure (2) given below, prove that $\angle B A D: \angle A D B=3: 1$.
(c) In the figure (3) given below, $A B \| C D$. Find the values of x, y and \angle.

Solution:
(a) In following figure,

Given. ABC is an equilateral triangle $\mathrm{BC}=\mathrm{CE}$
To find. $\angle \mathrm{ACE}$ and $\angle \mathrm{AEC}$.

(1)

As given that $A B C$ is an equilateral triangle,
i.e. $\angle \mathrm{BAC}=\angle \mathrm{B}=\angle \mathrm{ACB}=60^{\circ}$
(each angle of an equilateral triangle is 60°)
Now, $\angle \mathrm{ACE}=\angle \mathrm{BAC}+\mathrm{CB}$ (exterior angle is equal to sum of two interior opposite angles)
$\Rightarrow \angle \mathrm{ACE}=60^{\circ}+60^{\circ}$
[By
$\Rightarrow \quad \angle \mathrm{ACE}=120^{\circ}$
Now, in $\triangle \mathrm{ACE}$
Given, $\mathrm{AC}=\mathrm{CE}$
$(\because A C=B C=C E)$
$\angle \mathrm{CAE}=\angle \mathrm{AEC}$
(In a triangle equal sides have equal angles opposite to them)
tiso, $\angle \mathrm{CAE}+\angle \mathrm{AEC}+120^{\circ}=80^{\circ}$
(sum of all angles in a triangle is 180°)
$\Rightarrow \quad \angle \mathrm{AEC}+\angle \mathrm{AEC}+120^{\circ}=180 \quad[\mathrm{By}(2)]$
$\Rightarrow 2 \angle \mathrm{AEC}=180^{\circ}-120^{\circ} \Rightarrow 2 \angle \mathrm{AEC}=60^{\circ}$
$\Rightarrow 2 \angle \mathrm{AEC}=\frac{60^{\circ}}{2}=30^{\circ}$
Hence, $\angle \mathrm{ACE}=120^{\circ}$ and $\angle \mathrm{AEC}=30^{\circ}$
b) In following figure

Given. $\triangle \mathrm{ABD}, \mathrm{AC}$ meets BD in $\mathrm{C} \cdot \mathrm{AB}=\mathrm{BC}, \mathrm{AC}=\mathrm{CD}$.

(2)

To prove. $\angle \mathrm{BAD}: \angle \mathrm{ADB}=3: 1$
Proof. In $\triangle A B C$,
$A B=B C$
$\therefore \angle \mathrm{ACB}=\angle \mathrm{BAC}$
(In a triangle, equal angles opposite to them)
In $\triangle \mathrm{ACD}$,
$\mathrm{AC}=\mathrm{CD}$
(Given)
$\therefore \quad \angle \mathrm{ADC}=\angle \mathrm{CAD}$
(In a triangle, equal sides have equal angles opposite to them)
$\Rightarrow \quad \angle \mathrm{CAD}=\angle \mathrm{ADC}$
From, Adding (1) and (2), we get

$$
\begin{align*}
& \angle \mathrm{BAC}+\angle \mathrm{CAD}=\angle \mathrm{ACB}+\angle \mathrm{ADC} \\
& \angle \mathrm{BAD}=\angle \mathrm{ACB}+\angle \mathrm{ADC} \tag{3}
\end{align*}
$$

Now, in $\triangle \mathrm{ACD}$
Exterior $\angle \mathrm{ACB}=\angle \mathrm{CAD}+\angle \mathrm{ADC}$
(In an triangle, exterior angle is equal to sum of two interior opposite angles)

$$
\begin{align*}
& \therefore \quad \angle \mathrm{ACB}=\angle \mathrm{ADC}+\angle \mathrm{ADC} \\
& \Rightarrow \quad \angle \mathrm{ACB}=2 \angle \mathrm{ADC}
\end{align*}
$$

Now, $\angle \mathrm{BAD}=2 \angle \mathrm{ADC}+\angle \mathrm{ADC}$
[From (3) and (4)]
$\Rightarrow \quad \angle \mathrm{BAD}=3 \angle \mathrm{ADC} \Rightarrow \quad \frac{\angle \mathrm{BAD}}{\angle \mathrm{ADC}}=\frac{3}{1}$

$$
\Rightarrow \quad \angle \mathrm{BAD}: \angle \mathrm{ADC}=3: 1 \quad \text { (Q.E.D.) }
$$

(c) In following figure,

Given. $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{ECD}=24^{\circ}, \angle \mathrm{CDE}=42^{\circ}$.
To find. The value of x, y and z.

Now, in \triangle CDE,
ext $\angle \mathrm{CEA}=24^{\circ}+42^{\circ} \quad$ [In a triangle exterior angle is equal to sum of two interior opposite angles]

$$
\begin{equation*}
\angle \mathrm{CEA}=66^{\circ} \tag{1}
\end{equation*}
$$

Now, in $\triangle A C E$
$\mathrm{AC}=\mathrm{CE}$
(Given)
$\therefore \quad \angle \mathrm{CAE}=\angle \mathrm{CEA}$
(In a triangle equal side have equal angles opposite to them)
$y=66^{\circ}$
(By equation (1)
Also, $y+z+\angle \mathrm{CEA}=180^{\circ}$
(sum of all angles in a triangle is 180°)
$\Rightarrow 66^{\circ}+z+66^{\circ}=180^{\circ}$
[From equation (1) and
(2)]

$$
\begin{align*}
& \Rightarrow \quad z+132^{\circ}=180^{\circ} \Rightarrow z=180^{\circ}-132^{\circ} \\
& \Rightarrow \quad z=48^{\circ} \tag{3}
\end{align*}
$$

Given that, $\mathrm{AB} \| \mathrm{CD}$
$\therefore \quad \angle x=\angle \mathrm{ADC}$
$x=42^{\circ}$
(alternate angles)

Hence, from (2), (3) and (4) equation gives $x=$ $42^{\circ}, y=66^{\circ}$ and $z=48^{\circ}$

Question 9.

In the given figure, D is mid-point of $B C, D E$ and $D F$ are perpendiculars to $A B$ and $A C$ respectively such that $D E=D F$. Prove that $A B C$ is an isosceles triangle.

Solution:
Given : In $\triangle A B C$,
D is the mid-point of $B C$
$\mathrm{DE} \perp \mathrm{AB}, \mathrm{DF} \perp \mathrm{AC}$
$\mathrm{DE}=\mathrm{DE}$

To prove: $\triangle A B C$ is an isosceles triangle
Proof : In right $\triangle B E D$ and $\triangle C D F$
Hypotenuse BD = DC (D is mid-point)
Side $D F=D E$
(Given)
$\therefore \triangle \mathrm{BED} \cong \triangle \mathrm{CDF} \quad$ (RHS axiom)
$\therefore \angle \mathrm{B}=\angle \mathrm{C}$
$\Rightarrow \mathrm{AB}=\mathrm{AC} \quad$ (Sides opposite to equal angles)
$\therefore \triangle \mathrm{ABC}$ is an isosceles triangle

Question 10.
In the given figure, $A D, B E$ and $C F$ arc altitudes of $\triangle A B C$. If $A D=B E=C F$, prove that $A B C$ is an equilateral triangle.
Solution:

Given : In the figure given,
$A D, B E$ and $C F$ are altitudes of $\triangle A B C$ and
$A D=B E=C F$

To prove : $\triangle \mathrm{ABC}$ is an equilateral triangle
Proof : In the right $\triangle B E C$ and $\triangle B F C$
Hypotenuse BC $=\mathrm{BC}$
(Common)
Side BE $=C F$
(Given)
$\therefore \triangle \mathrm{BEC} \cong \triangle \mathrm{BFC}$ (RHS axiom)
$\therefore \angle \mathrm{C}=\angle \mathrm{B}$
(c.p.c.t.)
$\mathrm{AB}=\mathrm{AC} \quad$ (Sides opposite to equal angles)

Similarly we can prove that $\triangle C F A \cong \triangle A D C$
$\therefore \angle \mathrm{A}=\angle \mathrm{C}$
$\therefore \mathrm{AB}=\mathrm{BC}$
From (i) and (ii),

$$
A B=B C=A C
$$

$\therefore \triangle \mathrm{ABC}$ is an equilateral triangle

Question 11.

In a triangle $A B C, A B=A C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $B D=C E$. Show that:
(i) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ECB}$
(ii) $\angle D C B=\angle E B C$
(iii) $O B=O C$,where O is the point of intersection of $B E$ and $C D$.

Solution:

Given : In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
D and E are points on the sides $A B$ and $A C$ respectively such that $\mathrm{BD}=\mathrm{CE}$

To prove : (i) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ECB}$
(ii) $\angle \mathrm{DCB}=\angle \mathrm{EBC}$
$\mathrm{OB}=\mathrm{OC}$ where O is the point of intersection of $B E$ and $C D$.
$C D$ and $B E$ are joined
Proof: In $\triangle A B C, A B=A C$
and $B D=C E$
$\therefore \angle \mathrm{C}=\angle \mathrm{B} \quad$ (Opposite to equal sides)
In $\triangle \mathrm{DBC}$ and $\triangle \mathrm{ECB}$
$\mathrm{BC}=\mathrm{BC}$
$B D=C E$
$\angle \mathrm{B}=\angle \mathrm{C}$
(Common)
('Given)
(Proved)
(i) $\therefore \triangle \mathrm{DBC} \cong \triangle \mathrm{ECB}$
(SAS axiom)
(ii) $\therefore \angle \mathrm{DCB}=\angle \mathrm{EBC}$
(c.p.c.t.)
(iii) In $\triangle \mathrm{OBD}$ and $\triangle \mathrm{OCE}$
$\angle \mathrm{D}=\angle \mathrm{E} \quad\left(\right.$ each $\left.=90^{\circ}\right)$
$\mathrm{DB}=\mathrm{EC}$
(given)
$\angle \mathrm{DOB}=\angle \mathrm{EOC}$ (vertically oppositive

angles)

$\therefore \triangle \mathrm{OBD} \cong \triangle \mathrm{OCE} \quad$ (A.A.S. Axiom)
$\therefore \mathrm{OB}=\mathrm{OC}$

Question 12.
$A B C$ is an isosceles triangle in which $A B=A C . P$ is any point in the interior of
$\triangle A B C$ such that $\angle A B P=\angle A C P$. Prove that
(a) $B P=C P$
(b) AP bisects $\angle B A C$.

Solution:
Given : In an isosceles $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
P is any point inside the $\triangle A B C$ such that
$\angle \mathrm{ABP}=\angle \mathrm{ACP}$
To prove : (a) $\mathrm{BP}=\mathrm{CP}$

(b) AP bisects $\angle \mathrm{BAC}$

Proof: In $\triangle A P B$ and $\triangle A P C$
$\mathrm{AP}=\mathrm{AP}$
(Common)
$A B=A C$
$\angle \mathrm{ABP}=\angle \mathrm{ACP}$
$\therefore \triangle \mathrm{APB} \cong \triangle \mathrm{APC}$
(i) $\therefore \mathrm{BP}=\mathrm{CP}$
and $\angle \mathrm{BAP}=\angle \mathrm{CAP}$
(Given)
(Given)
(SSA axiom)
\therefore AP bisects $\angle B A C$

Question 13.

In the adjoining figure, D and E are points on the side $B C$ of $\triangle A B C$ such that $B D=$ $E C$ and $A D=A E$. Show that $\triangle A B D \cong \triangle A C E$.
Solution:

Given : In the given figure, D and E are the points on the sides $B C$ of $\triangle A B C$,
$\mathrm{BD}=\mathrm{EC}$ and $\mathrm{AD}=\mathrm{AE}$
To prove : $\triangle A B D \cong \triangle A C E$
Proof: \because In $\triangle A D E$
$\angle \mathrm{ADE}=\angle \mathrm{AED}$
$\therefore \angle \mathrm{AED}=\angle \mathrm{ADE}$
But $\angle \mathrm{ADE}+\angle \mathrm{ADB}=180^{\circ} \quad$ (Linear pair)
and $\angle \mathrm{AED}+\angle \mathrm{AEC}=180^{\circ} \quad$ (Linear pair)
$\therefore \angle \mathrm{ADB}=\angle \mathrm{AEC} \quad(\because \angle \mathrm{ADE}=\angle \mathrm{AED})$
Now in $\triangle A B D$ and $\triangle A C E$
$\mathrm{AD}=\mathrm{AE}$
$B D=C E$
$\angle \mathrm{ADB}=\angle \mathrm{AEC}$
(Given)
(Given)
(Proved)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$
(SAS axiom)

Question 14.

(a) In the figure (i) given below, CDE is an equilateral triangle formed on a side CD of a square $A B C D$. Show that $\triangle A D E \cong \triangle B C E$ and hence, $A E B$ is an isosceles triangle.

(b) In the figure (ii) given below, O is a point in the interior of a square $A B C D$ such that OAB is an equilateral trianlge. Show that OCD is an isosceles triangle.

Solution:
(a) Given : In the figure, CDE is an equilateral triangle on the side $C D$ of square ABCD
AE and BE are joined
To prove : (i) $\triangle \mathrm{ADE} \cong \triangle \mathrm{BCE}$
(ii) $\triangle \mathrm{AEB}$ is an isosceles triangle.

Proof : \because Each angle of a square is 90° and each angle of an equilateral triangle is 60°
$\therefore \angle \mathrm{ADE}=\angle \mathrm{ADC}+\angle \mathrm{CDE}$
$=90^{\circ}+60^{\circ}=150^{\circ}$
Similarly, $\angle \mathrm{BCE}=90^{\circ}+60^{\circ}=150^{\circ}$
Now in $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCE}$
$A D=B C$
(Sides of a square)
$\mathrm{DE}=\mathrm{CE} \quad$ (Sides of an equilateral triangle)
$\angle \mathrm{ADE}=\angle \mathrm{BCE}$
(Each 150°)
(i) $\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{BCE}$
' (SAS axiom)
(ii) $\therefore \mathrm{AE}-\mathrm{RE}$

Now in $\triangle A E B$,
$\mathrm{AE}=\mathrm{BE}$
(Proved)
$\therefore \triangle \mathrm{AEB}$ is an isosceles triangle
(b) Given : In the figure, O is a point in interior of the square $A B C D$ such that $O A B$ is an equilateral triangle.

To prove : $\triangle \mathrm{OCD}$ is an isosceles triangle
Proof: $\because \triangle \mathrm{OAB}$ is an equilateral triangle
$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{AB}$
$\angle \mathrm{OAD}=\angle \mathrm{DAB}-\angle \mathrm{OAB}$
$=90^{\circ}-60^{\circ}=30^{\circ}$

Similarly, $\angle \mathrm{OBC}=30^{\circ}$
Now in $\triangle O A D$ and $\triangle O B C$
$\mathrm{OA}=\mathrm{OB} \quad$ (Sides of equilateral triangle)
$A D=B C$
(Sides of a square)
$\angle O A D=\angle O B C$
$\therefore \triangle \mathrm{OAD} \cong \triangle \mathrm{OBC}$
$\therefore \mathrm{OD}=\mathrm{OC}$
(Each $=30^{\circ}$)

Now in $\triangle O C D$,
$\mathrm{OD}=\mathrm{OC}$
$\therefore \triangle \mathrm{OCD}$ is an isosceles triangle

Question 15.

In the given figure, $A B C$ is a right triangle with $A B=A C$. Bisector of $\angle A$ meets $B C$ at D. Prove that $B C=2 A D$. Solution:

In the given figure, $\triangle A B C$ is a right angled triangle, right angle at A
$A B=A C$
Bisector of $\angle \mathrm{A}$ meets BC at D

To prove : $\mathrm{BC}=2 \mathrm{AD}$
Proof: In right $\triangle A B C, \angle A=90^{\circ}$ and $A B=$ AC
$\therefore \angle \mathrm{B}=\angle \mathrm{C}=\frac{90^{\circ}}{2}=45^{\circ}\left(\because \angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}\right)$
$\because \mathrm{AD}$ is bisector of $\angle \mathrm{A}$
$\therefore \angle \mathrm{DAB}=\angle \mathrm{DAC}=\frac{90^{\circ}}{2}=45^{\circ}$
Now in $\triangle \mathrm{ADB}$

$$
\begin{equation*}
\angle \mathrm{DAB}=\angle \mathrm{B} \tag{i}
\end{equation*}
$$

(Each 45°)
$\therefore \mathrm{AD}=\mathrm{DB}$
Similarly we can prove that in $\triangle A D C$,
$\angle \mathrm{DAC}=\angle \mathrm{C}=45^{\circ}$
$\therefore \mathrm{AD}=\mathrm{DC}$
Adding (i) and (ii),
Adding (i) and (ii),
$\mathrm{AD}+\mathrm{AD}=\mathrm{DB}+\mathrm{DC}=\mathrm{BD}+\mathrm{DC}$
$\Rightarrow 2 \mathrm{AD}=\mathrm{BC}$
Hence BC=2AD

Question 1.
In $\triangle P Q R, \angle P=70^{\circ}$ and $\angle R=30^{\circ}$. Which side of this triangle is longest? Give reason for your answer.
Solution:
In $\triangle \mathrm{PQR}, \angle \mathrm{P}=70^{\circ}, \angle \mathrm{R}=30^{\circ}$
But $\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow 70^{\circ}+30^{\circ}+\angle \mathrm{Q}=180^{\circ}$
$\Rightarrow 100^{\circ}+\angle \mathrm{Q}=180^{\circ}$

$\therefore \angle \mathrm{Q}=180^{\circ}-100^{\circ}=80^{\circ}$
$\therefore \angle \mathrm{Q}=80^{\circ}$ the greatest angle
\therefore Its opposite side PR is the longest side (Side opposite to greatest angle is longest)

Question 2.
Show that in a right angled triangle, the hypotenuse is the longest side.

Solution:
Given : In right angled $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$

To prove : AC is the longest side
Proof: In $\triangle A B C$,
$\because \angle B=90^{\circ}$
$\therefore \angle \mathrm{A}$ and $\angle \mathrm{C}$ are acute angles
i.e., less than 90°
$\therefore \angle \mathrm{B}$ is the greatest angle or $\angle \mathrm{B}>\angle \mathrm{C}$ and $\angle \mathrm{B}>\angle \mathrm{A}$
$\therefore \mathrm{AC}>\mathrm{AB}$ and $\mathrm{AC}>\mathrm{BC}$
Hence $A C$ is the longest side

Question 3.
$P Q R$ is a right angle triangle at Q and $P Q: Q R=3: 2$. Which is the least angle. Solution:

Here, PQR is a right angle triangle at Q . Also given that
$\mathrm{PQ}: \mathrm{QR}=3: 2$
Let $\mathrm{PQ}=3 x$, then, $\mathrm{QR}=2 x$
It is clear that QR is the least side.
Then, we know that the least angle has least side opposite to it.
Hence, $\angle \mathrm{P}$ is the least angle.

Question 4.
In $\triangle A B C, A B=8 \mathrm{~cm}, B C=5.6 \mathrm{~cm}$ and $C A=6.5 \mathrm{~cm}$. Which is (i) the greatest angle ?
(ii) the smallest angle ?

Solution:

Given that $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=5.6 \mathrm{~cm}, \mathrm{CA}=6.5$ cm.

Here $A B$ is the greatest side
Then $\angle \mathrm{C}$ is the greatest angle
(\therefore the greater side has greater angle opposite to
it)
Also, $B C$ is the least side
then $\angle \mathrm{A}$ is the least angle
(\because the least side has least angle opposite to it)

Question 5.
In $\triangle A B C, \angle A=50^{\circ}, \angle B=60^{\circ}$, Arrange the sides of the triangle in ascending order. Solution:

Given in a $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=60^{\circ}$
$\angle \mathrm{C}=180-(\angle \mathrm{A}+\angle \mathrm{B})$
[sum of all angles in a triangle is 180°]
$\Rightarrow \quad \angle \mathrm{C}=180^{\circ}-\left(50^{\circ}+60^{\circ}\right)$
$\Rightarrow \quad \angle \mathrm{C}=180^{\circ}-110^{\circ} \Rightarrow \angle \mathrm{C}=70^{\circ}$
Now, $\angle \mathrm{A}<\angle \mathrm{B}<\angle \mathrm{C}$
$\mathrm{BC}<\mathrm{CA}<\mathrm{AB}$
(\because greater angles has greater side opposite to it)
Hence, sides of $\triangle A B C$ in ascending order as $B C$,
CA, AB.

Question 6.
In figure given alongside, $\angle B=30^{\circ}, \angle C=40^{\circ}$ and the bisector of $\angle A$ meets $B C$ at
D. Show
(i) $B D>A D$
(ii) $D C>A D$
(iii) $A C>D C$
(iv) $A B>B D$

Solution:
Given: In $\triangle \mathrm{ABC}, \angle \mathrm{B}=30^{\circ}, \angle \mathrm{C}=40^{\circ}$
and bisector of $\angle \mathrm{A}$ meets BC at D
To prove :
(i) $\mathrm{BD}>\mathrm{AD}$
(ii) $\mathrm{DC}>\mathrm{AD}$
(iii) $\mathrm{AC}>\mathrm{DC}$
(iv) $\mathrm{AB}>\mathrm{BD}$

Proof: $\ln \triangle \mathrm{ABC}$,
$\angle \mathrm{B}=30^{\circ}$ and $\angle \mathrm{C}=40^{\circ}$
$\therefore \angle \mathrm{BAC}=180^{\circ}-\left(30^{\circ}+40^{\circ}\right)=180^{\circ}-70^{\circ}=$ 110°
$\because \mathrm{AD}$ is bisector of $\angle \mathrm{A}$
$\therefore \angle \mathrm{BAD}=\angle \mathrm{CAD}=\frac{110^{\circ}}{2}=55^{\circ}$
(i) Now in $\triangle \mathrm{ABD}$,
$\because \angle B A D>\angle B$
$\therefore \mathrm{BD}>\mathrm{AD}$
(ii) In $\triangle \mathrm{ACD}$,
$\angle C A D>\angle C$
$\mathrm{DC}>\mathrm{AD}$
(iii) $\angle \mathrm{ADC}=180^{\circ}-\left(40^{\circ}+55^{\circ}\right)=180^{\circ}-95^{\circ}=$
85°
In $\triangle \mathrm{ADC}$,
$\because \angle A D C>\angle C A D$
$\therefore \mathrm{AC}>\mathrm{DC}$
(iv) Similarly,
$\angle \mathrm{ADB}=180^{\circ}-\angle \mathrm{ADC}=180^{\circ}-85^{\circ}=95^{\circ}$
\therefore In $\triangle \mathrm{ADB}$
$\mathrm{AB}>\mathrm{BD}$
Hence proved.

Question 7.

(a) In the figure (1) given below, $A D$ bisects $\angle A$. Arrange $A B, B D$ and $D C$ in the descending order of their lengths.
(b) In the figure (2) given below, $\angle A B D=65^{\circ}, \angle D A C=22^{\circ}$ and $A D=B D$. Calculate $\angle A C D$ and state (giving reasons) which is greater : BD or DC ?

(1)

(2)

Solution:
(a) Given. In $\triangle \mathrm{ABC}, \mathrm{AD}$ bisects $\angle \mathrm{A}$, $\angle B=60^{\circ}$ and $\angle C=40^{\circ}$
To arrange. AB, BD and DC in the descending order.

In $\triangle \mathrm{ABC}$
$\angle \mathrm{BAC}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
[sum of all angles in a triangle is 180°]
$\Rightarrow \quad \angle \mathrm{BAC}+60^{\circ}+40^{\circ}=180^{\circ}$
[From given, $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=40^{\circ}$
$\Rightarrow \quad \angle \mathrm{BAC}=180^{\circ}-100^{\circ} \quad \Rightarrow \quad \angle \mathrm{BAC}=$
80°
$\therefore \quad \mathrm{AD}$ bisects $\angle \mathrm{A}$
$\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{DAC}=\frac{1}{2} \times \angle \mathrm{BAC}$
$\Rightarrow \quad \angle \mathrm{BAD}=\angle \mathrm{DAC}=\frac{1}{2} \times 80^{\circ}$
$\angle \mathrm{BAD}=\angle \mathrm{DAC}=40^{\circ}$
In $\triangle \mathrm{ABD}$, ext. $\angle \mathrm{ADC}=\angle \mathrm{B}+\angle \mathrm{BAD}$
[In a triangle exterior angle is equal to sum of opposite interior angles]
$\therefore \quad \angle \mathrm{ADC}=60^{\circ}+40^{\circ}$
$\Rightarrow \angle \mathrm{ADC}=100^{\circ}$
Similarly, In $\triangle \mathrm{ACD}, \triangle \mathrm{ADB}$
$=40^{\circ}+40^{\circ}=80^{\circ}$
Now, $\angle \mathrm{ADB}=80^{\circ}$
$\angle \mathrm{BAD}=40^{\circ}$
[From (2)]
$\angle \mathrm{DAC}=40^{\circ}$
[From (1)]
Now, $\angle \mathrm{ADB}>\angle \mathrm{DAC}=\angle \mathrm{BAD}$

$$
\left[\because 80^{\circ}>40^{\circ}=40^{\circ}\right]
$$

Hence, $\mathrm{AB}, \mathrm{DC}, \mathrm{BD}$ in the descending order of their lengths
(Note : It can also written as $\mathrm{AB}, \mathrm{BD}, \mathrm{DC}$ in the
descending order $\because \mathrm{DC}=\mathrm{BD}$)
(b) Given. In $\triangle \mathrm{ABC}, \angle \mathrm{ABD}=65^{\circ}$
$\angle \mathrm{DAC}=22^{\circ}$, and $\mathrm{AD}=\mathrm{BD}$.
To calculate the $\angle \mathrm{ACD}$ and say which is greater, BD or DC.
Now, in $\triangle \mathrm{ABD}$

$\therefore \quad \mathrm{AD}=\mathrm{BD}$ (given)
$\therefore \angle \mathrm{ABD}=\angle \mathrm{BAD}$
(In a triangle, equal sides have equal angles opposite to them)
Also, $\angle \mathrm{ABD}=65^{\circ}$
From (1) and (2), we get
$\angle \mathrm{BAD}=65^{\circ}$
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
[sum of all angles in a triangle is 180°]
$(\mathrm{BAD}+\angle \mathrm{DAC})+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

$$
[\therefore \quad \angle \mathrm{A}=\angle \mathrm{BAD}+\angle \mathrm{DAC}]
$$

$$
\Rightarrow \quad \angle \mathrm{BAD}+\angle \mathrm{DAC}+\angle \mathrm{B}+\angle \mathrm{ACD}=180^{\circ}
$$

$$
[\therefore \quad \angle \mathrm{C}=\angle \mathrm{ACD}]
$$

$\Rightarrow 65^{\circ}+22^{\circ}+65^{\circ}+\angle \mathrm{ACD}=180^{\circ}$
(Substituting the value of $\angle \mathrm{BAD}, \angle \mathrm{DAC} \&$
$\angle B)$
$\Rightarrow \quad 152^{\circ}+\angle \mathrm{ACD}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ACD}=180^{\circ}-152^{\circ} \Rightarrow \angle \mathrm{ACD}=$
28° Now, $\angle \mathrm{BAD}=65^{\circ}$ [From (3)]
and $\angle \mathrm{CAD}=22^{\circ} \quad$ (Given)
$\therefore \quad \angle \mathrm{BAD}>\angle \mathrm{CAD}$
$\therefore \quad \mathrm{BD}>\mathrm{DC}$
[Greater angle has greater opposite side]
Hence, BD is greater than DC.

Question 8.

(a) In the figure (1) given below, prove that (i) CF> AF (ii) DC>DF.
(b) In the figure (2) given below, $A B=A C$.

Prove that $A B>C D$.
(c) In the figure (3) given below, $A C=C D$. Prove that $B C<C D$.
(a) Given. In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}, \mathrm{CF} \perp \mathrm{AB}$.

AD and $\angle \mathrm{E}$ intersect at F .

$$
\angle \mathrm{BAC}=60^{\circ}, \angle \mathrm{ABC}=65^{\circ}
$$

(1)

To prove. (i) $\mathrm{CF}>\mathrm{AF}$ (ii) $\mathrm{DC}>\mathrm{DF}$
Proof. (i) In $\triangle \mathrm{AEC}$,

$$
\begin{array}{rr}
\angle \mathrm{B}+\angle \mathrm{BEC}+\angle \mathrm{BCE}=180^{\circ} & \ldots \ldots(1) \tag{1}\\
\quad\left(\text { sum of angles of a triangle }=180^{\circ}\right)
\end{array}
$$

$$
\begin{equation*}
\angle \mathrm{B}=65^{\circ} \quad \text { (Given) } \tag{2}
\end{equation*}
$$

$\angle \mathrm{BEC}=90^{\circ}[(\mathrm{CE} \perp \mathrm{AB})$ Given $]$. (3)
Putting these value in equation (1), we get

$$
65^{\circ}+90^{\circ}+\angle \mathrm{BCE}=180^{\circ}
$$

$\Rightarrow 155^{\circ}+\angle \mathrm{BCE}=180^{\circ} \Rightarrow \angle \mathrm{BCE}=25^{\circ}$
$\Rightarrow \quad \angle \mathrm{DCF}=25^{\circ} \quad[\mathrm{BCE}=\angle \mathrm{DCF}]$
Now in \triangle CDF,

$$
\angle \mathrm{DCF}+\angle \mathrm{FDC}+\angle \mathrm{CFD}=180^{\circ}
$$

Solution:
[sum of all angles in a triangle is 180°]
$\Rightarrow \quad 25+90^{\circ}+\angle \mathrm{CFD}=180^{\circ}$
[From (4) $\angle \mathrm{DCF}=25^{\circ} \& \mathrm{AD} \perp \mathrm{BC}, \angle \mathrm{FDC}=90^{\circ}$]
$\Rightarrow \quad 115^{\circ}+\angle \mathrm{CFD}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{CFD}=180^{\circ}-115^{\circ} \angle \mathrm{CFD}=65^{\circ}$
Also, $\angle \mathrm{AFC}+\angle \mathrm{CFD}=180^{\circ}$
[AFD is a straight line]
$\Rightarrow \quad \angle \mathrm{AFC}+65^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{AFC}=180-65^{\circ}\left(\angle \mathrm{CFD}=65^{\circ}\right)$
$\Rightarrow \quad \angle \mathrm{AFC}=115^{\circ}$
Now, in ACE,

$$
\begin{array}{ll}
\angle \mathrm{ACE}+ & \angle \mathrm{CEA}+\angle \mathrm{BAC}=180^{\circ} \\
\Rightarrow & \angle \mathrm{ACE}+90^{\circ}+60^{\circ}=180^{\circ} \\
\Rightarrow & \quad\left[\because \angle \mathrm{CEA}=90^{\circ}, \angle \mathrm{BAC}=60^{\circ}\right] \\
\Rightarrow & \angle \mathrm{ACE}+150^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{ACE}=180^{\circ}-150^{\circ} \Rightarrow \angle \mathrm{ACE}=30^{\circ} \ldots \text { (7) }
\end{array}
$$

Now, in $\triangle \mathrm{AFC}$,

$$
\angle \mathrm{AFC}+\angle \mathrm{ACF}+\angle \mathrm{FAC}=180^{\circ}
$$

[sum of all angles in a triangle is 180°]
$\Rightarrow 115^{\circ}+30^{\circ}+\angle \mathrm{FAC}=180^{\circ}$ (By (6) and (7))
$\Rightarrow 145^{\circ}+\angle \mathrm{FAC}=180^{\circ}$
$\Rightarrow \angle \mathrm{FAC}=180^{\circ}-145^{\circ}$
$\Rightarrow \angle \mathrm{FAC}=35^{\circ}$

Now, in $\triangle \mathrm{AFC}$,
$\angle \mathrm{FAC}=35^{\circ}$
[From equation (8)]
$\angle \mathrm{ACF}=30^{\circ}$
[From equation (7)]
$\therefore \angle \mathrm{FAC}>\angle \mathrm{ACF} \quad\left(35^{\circ}>30^{\circ}\right)$
$\therefore \mathrm{CF}>\mathrm{AF}$
[Greater angle has greater side opposite to it]
Now, in $\triangle C D F$,

$$
\angle \mathrm{DCF}=25^{\circ} \quad[\text { From equation (4) }]
$$

$\angle \mathrm{CFD}=65^{\circ}$
[From equation (5)]
$\left(\because 65^{\circ}>25^{\circ}\right)$
$\therefore \angle \mathrm{CFD}>\mathrm{DCF}$
[greater angle has greater side opposite to it]
(Q.E.D.)
(b) Given. In $\triangle \mathrm{ABD}, \mathrm{AC}$ meets BD in C .
$\angle \mathrm{B}=70^{\circ}, \angle \mathrm{D}=40^{\circ} \mathrm{AB}=\mathrm{AC}$.
To prove. $A B>C D$.
Proof. In $\triangle \mathrm{ABC}$,
$A B=A C$
(given)
$\therefore \angle \mathrm{ACB}=\angle \mathrm{B}$
(In a triangle, equal sides have equal angles opposite to them)

(2)

Also, $\angle \mathrm{B}=70^{\circ}$
[Given]
From (i) and (ii), we get

$$
\begin{align*}
& \angle \mathrm{ACB}+\angle \mathrm{ACD}=180^{\circ}[\mathrm{BCD} \text { is a st. line }] \\
\Rightarrow & 70^{\circ}+\angle \mathrm{ACD}=180^{\circ} \quad \text { [From equation (3)] } \\
\Rightarrow & \angle \mathrm{ACD}=180^{\circ}-70^{\circ} \\
\Rightarrow & \angle \mathrm{ACD}=110^{\circ} \tag{4}
\end{align*}
$$

Now, in $\triangle A C D$,

$$
\angle \mathrm{CAD}+\angle \mathrm{ACD}+\angle \mathrm{D}=180^{\circ}
$$

$$
\text { [sum of all angles in a triangle is } 180^{\circ} \text {] }
$$

$$
\begin{align*}
& \Rightarrow \quad \angle \mathrm{CAD}+110^{\circ}+40^{\circ}=180^{\circ} \text { [From (4) } \\
& \angle \mathrm{ACD}=110^{\circ} \text { and } \angle \mathrm{D}=40^{\circ} \\
& \Rightarrow \quad \angle \mathrm{CAD}+150^{\circ}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{CAD}=180^{\circ}-150^{\circ} \\
& \Rightarrow \quad \angle \mathrm{CAD}=30^{\circ}
\end{align*}
$$

Now, in $\triangle A C D$
$\angle \mathrm{ACD}=110^{\circ}$
[From equation (4)]
$\angle \mathrm{CAD}=30^{\circ}$
[From equation (5)]
$\angle \mathrm{D}=40^{\circ}$
(given)
$\therefore \angle \mathrm{D}>\angle \mathrm{CAD}$
$\left(40^{\circ}>30^{\circ}\right)$
$\therefore \mathrm{AC}>\mathrm{CD}$
[Greater angle has greater side opposite to it]
$\Rightarrow \quad \mathrm{AB}>\mathrm{CD} \quad[\because \mathrm{AB}=\mathrm{AC}$ given $)]$
(Q.E.D.)
(c) Given. In $\triangle \mathrm{ACD}, \mathrm{AC}=\mathrm{CD}, \angle \mathrm{BAD}=$ $60^{\circ}, \angle \mathrm{ACB}=70^{\circ}$

To prove. $\mathrm{BC}<\mathrm{CD}$.
Proof. In $\triangle \mathrm{ACD}$,
$\therefore \quad \mathrm{AC}=\mathrm{CD}$,
(Given)

$\therefore \angle \mathrm{CAD}=\angle \mathrm{CDA}$
[In a triangle If two sides are equal, then angles opposite to them are also equal]

Also, $\angle \mathrm{ACB}=70^{\circ}$
Now, $\angle \mathrm{ACB}=\angle \mathrm{CAD}+\angle \mathrm{CDA}$
[exterior angle is equal to sum of two interior opposite angles]
$\Rightarrow 70^{\circ}=\angle \mathrm{CAD}+\angle \mathrm{CAD}$
[From (1) and (2)]
$\Rightarrow \quad 70^{\circ}=2 \angle \mathrm{CAD}$
$\Rightarrow 2 \angle \mathrm{CAD}=70^{\circ}$
$\Rightarrow \quad \angle \mathrm{CAD}=\frac{70^{\circ}}{2}=35^{\circ}$
$\because \quad \angle \mathrm{BAD}=60^{\circ}$
(given)
$\therefore \angle \mathrm{BAC}=\angle \mathrm{BAD}-\angle \mathrm{CAD}$
$=60^{\circ}-35^{\circ}=25^{\circ}$
$\therefore \quad \angle \mathrm{BAC}<\angle \mathrm{CAD} \quad\left[\because 25^{\circ}<35^{\circ}\right]$
$\therefore \quad \mathrm{BC}<\mathrm{CD}$
[Greater angles has greater side opposite to it].
(Q.E.D.)

Question 9.
(a) In the figure (i) given below, $\angle B<\angle A$ and $\angle C<\angle D$. Show that $A D<B C$. (b) In the figure (ii) given below, D is any point on the side $B C$ of $\triangle A B C$. If $A B>A C$, show that $A B>A D$.
Solution:
(a) In the given figure,
$\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$
To prove : $\mathrm{AD}<\mathrm{BC}$
Proof: $\ln \triangle \mathrm{ABO}$
$\angle \mathrm{B}<\angle \mathrm{A}$
(Given)

Similarly in $\triangle O C D$

$$
\angle \mathrm{C}<\angle \mathrm{D}
$$

(Given)
$\therefore \mathrm{OD}<\mathrm{OC}$
Adding (i) and (ii)

$$
\mathrm{AO}+\mathrm{OD}<\mathrm{BO}+\mathrm{OC}
$$

$\Rightarrow \mathrm{AD}<\mathrm{BC}$
Hence $\mathrm{AD}<\mathrm{BC}$
(b) In the given figure,
D is any point on $B C$ of $\triangle A B C$
$A B>A C$
To prove : $A B>A D$
Proof: $\because \ln \triangle \mathrm{ABC}$
$A B>A C$
$\angle C>\angle B$

In $\triangle A B D$
Ext. $\angle \mathrm{ADC}>\angle \mathrm{B}$
$\therefore \angle \mathrm{ADC}>\angle \mathrm{C}$

$$
\begin{equation*}
(\because \angle \mathrm{C}>\angle \mathrm{B}) \tag{i}
\end{equation*}
$$

$\therefore \mathrm{AC}>\mathrm{AD}$
But $A B>A C$
(Given) ...(ii)
\therefore From (i) and (ii),

$$
A B>A D
$$

Question 10.

(i) Is it possible to construct a triangle with lengths of its sides as $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm ? Give reason for your answer,
(ii) Is it possible to construct a triangle with lengths of its sides as $9 \mathrm{~cm}, 7 \mathrm{~cm}$ and 17 cm ? Give reason for your answer.
(iii) Is it possible to construct a triangle with lengths of its sides as $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 4 cm ? Give reason for your answer.
Solution:
(i) Length of sides of a triangle are $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm

We know that sum of any two sides of a triangle is greatar than its third side But $4+3=$ 7 cm
Which is not possible
Hence to construction of a triangle with sides $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm is not possible.
(ii) Length of sides of a triangle are $9 \mathrm{~cm}, 7 \mathrm{~cm}$ and 17 cm

We know that sum of any two sides of a triangle is greater than its third side Now $9+7$
$=16<17 \therefore$ It is not possible to construct a triangle with these sides.
(iii) Length of sides of a triangle are $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 4 cm We know that sum of any two sides of a triangle is greater than its third side Now $7+4=11>8$
Yes, It is possible to construct a triangle with these sides.

Multiple Choice Questions

Choose the correct answer from the given four options (1 to 18):
Question 1.
Which of the following is not a criterion for congruency of triangles?
(a) SAS
(b) ASA
(c) SSA
(d) SSS

Solution:
Criteria of congruency of two triangles 'SSA' is not the criterion. (c)

Question 2.
In the adjoining figure, $A B=F C, E F=B D$ and $\angle A F E=\angle C B D$. Then the rule by which $\triangle \mathrm{AFE}=\triangle \mathrm{CBD}$ is
(a) SAS
(b) ASA
(c) SSS
(d) AAS

Solution:
In the figure given, $\triangle \mathrm{AFE} \cong \triangle \mathrm{CBD}$ by SAS axiom
$A B+B F=B F+F C \quad(\because A B=F C)$
$\Rightarrow \mathrm{AF}=\mathrm{BC}$
$\mathrm{EF}=\mathrm{BD}$
$\angle \mathrm{AFE}=\angle \mathrm{CBD}$

Question 3.
In the adjoining figure, $A B \perp B E$ and $F E \perp B E$. If $A B=F E$ and $B C=D E$, then
(a) $\triangle \mathrm{ABD} \cong \triangle E F C$
(b) $\triangle \mathrm{ABD} \cong \triangle \mathrm{FEC}$
(c) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ECF}$
(d) $\triangle \mathrm{ABD} \cong \triangle \mathrm{CEF}$

Solution:

In the figure given,

$\mathrm{AB} \perp \mathrm{BE}$ and $\mathrm{FE} \perp \mathrm{BE}$
$\mathrm{AB}=\mathrm{FE}, \mathrm{BC}+\mathrm{CD}=\mathrm{CD}+\mathrm{DE}$
$\Rightarrow \mathrm{AB}=\mathrm{FE}$ and $\mathrm{BD}=\mathrm{CE}, \angle \mathrm{B}=\angle \mathrm{E}$ (Each $\left.90^{\circ}\right)$
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{FEC}$

Question 4.
In the adjoining figure, $A B=A C$ and $A D$ is median of $\triangle A B C$, then $A A D C$ is equal to (a) 60°
(b) 120°
(c) 90°
(d) 75°

Solution:
In the given figure, $A B=A C$
$A D$ is median of $\triangle A B C$

$\therefore \mathrm{D}$ is mid-point $\Rightarrow \mathrm{BD}=\mathrm{DC}$
$\therefore \mathrm{AD} \perp \mathrm{BC}$
$\therefore \angle \mathrm{ADC}=90^{\circ}$
(c) ${ }^{-}$

Question 5.
In the adjoining figure, O is mid point of $A B$. If $\angle A C O=\angle B D O$, then $\angle O A C$ is equal to
(a) $\angle O C A$
(b) \angle ODB
(c) $\angle O B D$
(d) $\angle B O D$

Solution:
In the given figure, O is mid-point of $A B$,
$\angle \mathrm{ACO}=\angle \mathrm{BDO}$
$\angle \mathrm{AOC}=\angle \mathrm{BOD}$
(Vertically opposite angles)

$\therefore \triangle \mathrm{OAC} \cong \triangle \mathrm{OBD}$
$\therefore \angle O A C=\angle O B D$
(AAS)
(c)

Question 6.
In the adjoining figure, $A C=B D$. If $\angle C A B=\angle D B A$, then $\angle A C B$ is equal to
(a) $\angle B A D$
(b) $\angle A B C$
(c) $\angle A B D$
(d) $\angle B D A$

Solution:
In the figure, $\mathrm{AC}=\mathrm{BD}$
$\angle \mathrm{CAB}=\angle \mathrm{DBA}$
$\mathrm{AB}=\mathrm{AB}$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$
$\therefore \angle \mathrm{ACB}=\angle \mathrm{BDA}$
(Common)
(SAS axiom)
(c.p.c.t.) (d)

Question 7.
In the adjoining figure, $A B C D$ is a quadrilateral in which BN and DM are drawn perpendiculars to $A C$ such that $B N=D M$. If $O B=4 \mathrm{~cm}$, then $B D$ is
(a) 6 cm
(b) 8 cm
(c) 10 cm
(d) 12 cm

Solution:
In the given figure,
$A B C D$ is a quadrilateral

$\mathrm{BN} \perp \mathrm{AC}, \mathrm{DM} \perp \mathrm{AC}$
$\mathrm{BN}=\mathrm{DM}, \mathrm{OB}=4 \mathrm{~cm}$
In $\triangle \mathrm{ONB}$ and $\triangle \mathrm{OMD}$

$$
\mathrm{BN}=\mathrm{DM}
$$

$$
\angle \mathrm{N}=\angle \mathrm{M}
$$

$$
\left(\text { Each } 90^{\circ}\right)
$$

$\angle \mathrm{BON}=\mathrm{DOM}$ (Vertically opposite angles)
$\therefore \triangle \mathrm{ONB} \cong \triangle \mathrm{OMD}$
$\therefore \mathrm{OB}=\mathrm{OD}$
But $\mathrm{OB}=4 \mathrm{~cm}$
$\therefore \mathrm{BD}=\mathrm{BO}+\mathrm{OD}=4+4=8 \mathrm{~cm}$

Question 8.

In $\triangle A B C, A B=A C$ and $\angle B=50^{\circ}$. Then $\angle C$ is equal to
(a) 40°
(b) 50°
(c) 80°
(d) 130°

Solution:
In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$

$\begin{aligned} \therefore \angle \mathrm{C} & =\angle \mathrm{B} \quad \text { (Angles opposite to equal sides) } \\ \angle \mathrm{B} & =50^{\circ} \\ \therefore \angle \mathrm{C} & =50^{\circ}\end{aligned}$

Question 9.
In $\triangle A B C, B C=A B$ and $\angle B=80^{\circ}$. Then $\angle A$ is equal to
(a) 80°
(b) 40°
(c) 50°
(d) 100°

Solution:

$$
\text { In } \triangle \mathrm{ABC}=\mathrm{BC}=\mathrm{AB}
$$

$\therefore \angle \mathrm{A}=\angle \mathrm{C}$ (Angles opposite to equal sides) $\angle B=80^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}-80^{\circ}=100^{\circ}$
But $\angle \mathrm{A}=\angle \mathrm{C}=100^{\circ}$
and $2 \angle A$

$$
\begin{equation*}
\angle \mathrm{A}=\frac{100^{\circ}}{2}=50^{\circ} \tag{c}
\end{equation*}
$$

Question 10.
In $\triangle P Q R, \angle R=\angle P, Q R=4 \mathrm{~cm}$ and $P R=5 \mathrm{~cm}$. Then the length of $P Q$ is (a) 4 cm
(b) 5 cm
(c) 2 cm
(d) 2.5 cm

Solution:
In $\triangle P Q R$
$\angle \mathrm{R}=\angle \mathrm{P}, \mathrm{QR}=4 \mathrm{~cm}$
$\mathrm{PR}=5 \mathrm{~cm}$

$\therefore \angle \mathrm{P}=\angle \mathrm{R}$

$$
P Q=Q R
$$

\therefore (Sides opposite to equal angles
$\therefore \mathrm{PQ}=4 \mathrm{~cm}$
(a)

Question 11.
In $\triangle A B C$ and $A P Q R, A B=A C, \angle C=\angle P$ and $\angle B=\angle Q$. The two triangles are (a) isosceles but not congruent
(b) isosceles and congruent
(c) congruent but isosceles
(d) neither congruent nor isosceles

Solution:

In $\triangle A B C$ and $\triangle P Q R$

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{AC}, \angle \mathrm{C}=\angle \mathrm{P} \\
& \angle \mathrm{~B}=\angle \mathrm{Q}
\end{aligned}
$$

$\because \operatorname{In} \triangle A B C, A B=A C$

$$
\angle \mathrm{C}=\angle \mathrm{B} \quad \text { (Opposite to equal sides) }
$$

But $\angle \mathrm{C}=\angle \mathrm{P}$ and $\angle \mathrm{B}=\angle \mathrm{Q}$
$\therefore \angle \mathrm{P}=\angle \mathrm{Q}$
$\therefore \mathrm{RQ}=\mathrm{PR}$
$\therefore \triangle R P Q$ is an isosceles triangle but not congruent

Question 12.

Two sides of a triangle are of lenghts 5 cm and 1.5 cm . The length of the third side of the triangle can not be
(a) 3.6 cm
(b) 4.1 cm
(c) 3.8 cm
(d) 3.4 cm

Solution:
In a triangle, two sides are 5 and 1.5 cm .
\because Sum of any two sides of a triangle is greater than its third side
\therefore Third side $<(5+1.5) \mathrm{cm}$
\Rightarrow Third side $<6.5 \mathrm{~cm}$
or third side $+1.5>5 \mathrm{~cm}$
or third side $>5-1.5=3.5 \mathrm{~cm}$
\therefore Third side cannot be equal to 3.4 cm

Question 13.

If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the lengths of the sides of a trianlge, then
(a) $a-b>c$
(b) $\mathbf{c}>\mathrm{a}+\mathrm{b}$
(c) $c=a+b$
(d) c $<$ A + B

Solution:
a, b, c are the lengths of the sides of a trianlge than $a+b>c$ or $c<a+b$ (Sum of any two sides is greater than its third side) (d)

Question 14.
It is not possible to construct a triangle when the lengths of its sides are
(a) $6 \mathrm{~cm}, 7 \mathrm{~cm}, 8 \mathrm{~cm}$
(b) $4 \mathrm{~cm}, 6 \mathrm{~cm}, 6 \mathrm{~cm}$
(c) $5.3 \mathrm{~cm}, 2.2 \mathrm{~cm}, 3.1 \mathrm{~cm}$
(d) $9.3 \mathrm{~cm}, 5.2 \mathrm{~cm}, 7.4 \mathrm{~cm}$

Solution:
We know that sum of any two sides of a triangle is greater than its third side $2.2+3.1=$ $5.3 \Rightarrow 5.3=5.3$ is not possible (c)

Question 15.
In $\triangle P Q R$, if $\angle R>\angle Q$, then
(a) $Q R>P R$
(b) $P Q>P R$
(c) $P Q<P R$
(d) $Q R<P R$

Solution:
In $\triangle P Q R, \angle R>\angle Q$
$\therefore \mathrm{PQ}>\mathrm{PR}(\mathrm{b})$

Question 16.
If triangle $P Q R$ is right angled at Q, then
(a) $P R=P Q$
(b) $P R<P Q$
(c) $P R<Q R$
(d) $P R>P Q$

Solution:
In right angled $\triangle P Q R$,
$\angle \mathrm{Q}=90^{\circ}$
Side opposite to greater angle is greater
$\therefore \mathrm{PR}>\mathrm{PQ}$
(d)

Question 17.
If triangle $A B C$ is obtuse angled and $\angle C$ is obtuse, then
(a) $A B>B C$
(b) $A B=B C$
(c) $A B<B C$
(d) $A C>A B$

Solution:
In $\triangle A B C, \angle C$ is obtuse angle
$\mathrm{AB}>\mathrm{BC}$
(Side opposite to greater angle is greater)
(a)

Question P.Q.
A triangle can be constructed when the lengths of its three sides are
(a) $7 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$
(b) $3.6 \mathrm{~cm}, 11.5 \mathrm{~cm}, 6.9 \mathrm{~cm}$
(c) $5.2 \mathrm{~cm}, 7.6 \mathrm{~cm}, 4.7 \mathrm{~cm}$
(d) $33 \mathrm{~mm}, 8.5 \mathrm{~cm}, 49 \mathrm{~mm}$

Solution:
We know that in a triangle, if sum of any two sides is greater than its third side, it is possible to construct it $5.2 \mathrm{~cm}, 7.6 \mathrm{~cm}, 4.7 \mathrm{~cm}$ is only possible. (c)

Question P.Q.
A unique triangle cannot be constructed if its
(a) three angles are given
(b) two angles and one side is given
(c) three sides are given
(d) two sides and the included angle is given

Solution:
A unique triangle cannot be constructed if its three angle are given, (a)

Question 18.
If the lengths of two sides of an isosceles are 4 cm and 10 cm , then the length of the third side is
(a) 4 cm
(b) 10 cm
(c) 7 cm
(d) 14 cm

Solution:
Lengths of two sides of an isosceles triangle are 4 cm and 10 cm , then length of the third side is 10 cm
(Sum of any two sides of a triangle is greater than its third side and 4 cm is not possible as $4+4>10 \mathrm{~cm}$.

Chapter Test

Question 1.
In triangles $A B C$ and $D E F, \angle A=\angle D, \angle B=\angle E$ and $A B=E F$. Will the two triangles be congruent? Give reasons for your answer.
Solution:
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
$\angle \mathrm{A}=\angle \mathrm{D}$
$\angle \mathrm{B}=\angle \mathrm{E}$
$\mathrm{AB}=\mathrm{EF}$
In $\triangle A B C$, two angles and included side is given but in $\triangle \mathrm{DEF}$, corresponding angles are equal but side is not included of there angle.
\therefore Triangles cannot be congruent.

Question 2.
In the given figure, $A B C D$ is a square. P, Q and R are points on the sides $A B, B C$ and $C D$ respectively such that $A P=B Q=C R$ and $\angle P Q R=90^{\circ}$. Prove that
(a) $\triangle \mathrm{PBQ} \cong \triangle \mathrm{QCR}$
(b) $P Q=Q R$
(c) $\angle P R Q=45^{\circ}$

Solution:
Given: In the given figure, ABCD is a square
P, Q and R are the points on the sides $A B$, $B C$ and $C D$ respectively such that

$$
\mathrm{AP}=\mathrm{BQ}=\mathrm{CR}, \angle \mathrm{PQR}=90^{\circ}
$$

To prove : (a) $\triangle \mathrm{PBQ} \cong \triangle \mathrm{QCR}$
(b) $\mathrm{PQ}=\mathrm{QR}$
(c) $\angle \mathrm{PRQ}=45^{\circ}$

Proof: $\because A B=B C=C D$ (Sides of square)
and $A P=B Q=C R$
(Given)
Subtracting, we get
$\mathrm{AB}-\mathrm{AP}=\mathrm{BC}-\mathrm{BQ}=\mathrm{CD}-\mathrm{CR}$
$\Rightarrow P B=Q C=R D$
Now in $\triangle \mathrm{PBQ}$ and $\angle \mathrm{QCR}$
$P B=Q C$ (Proved)
$B Q=C R$
$\angle \mathrm{B}=\angle \mathrm{C}$
(Given)
$\therefore \triangle \mathrm{PBQ} \cong \triangle \mathrm{QCR}$
(Each 90°)
$\therefore \mathrm{PQ}=\mathrm{QR}$ (SAS axiom)

But $\angle \mathrm{PQR}=90^{\circ}$ (c.p.c.t.)
$\angle \mathrm{RPQ}=\angle \mathrm{PRQ}$
(Angles opposite to equal angles)
But $\angle \mathrm{RPQ}+\angle \mathrm{PRQ}=90^{\circ}$
$\angle \mathrm{RPQ}=\angle \mathrm{PRQ}=\frac{90^{\circ}}{2}=45^{\circ}$

Question 3.
In the given figure, $A D=B C$ and $B D=A C$. Prove that $\angle A D B=\angle B C A$. Solution:

Given: In the figure,
$A D=B C, B D=A C$
To prove: $\angle \mathrm{ADB}=\angle \mathrm{BCA}$
Proof: In $\triangle A D B$ and $\triangle A C B$

$$
\mathrm{AB}=\mathrm{AB}
$$

$A D=B C$
$\mathrm{BD}=\mathrm{AC}$
$\therefore \triangle \mathrm{ADB} \cong \triangle \mathrm{ACB}$
$\therefore \angle \mathrm{ADB}=\angle \mathrm{BCA}$
(Common)
(Given)
(Given)
(SSS axiom)
(c.p.c.t.)

Question 4.
In the given figure, $O A \perp O D, O C X O B, O D=O A$ and $O B=O C$. Prove that $A B=$ CD.

Solution:

Given : In the figure, $\mathrm{OA} \perp \mathrm{OD}, \mathrm{OC} \perp \mathrm{OB}$.
$\mathrm{OD}=\mathrm{OA}, \mathrm{OB}=\mathrm{OC}$

To prove : $\mathrm{AB}=\mathrm{CD}$
Proof: $\angle A O D=\angle C O B \quad\left(\right.$ each $\left.90^{\circ}\right)$
Adding $\angle \mathrm{AOC}$
(both sides)
$\angle \mathrm{AOD}+\angle \mathrm{AOC}=\angle \mathrm{AOC}+\angle \mathrm{COB}$
$\Rightarrow \angle \mathrm{COD}=\angle \mathrm{AOB}$
Now, in $\triangle \mathrm{AOB}$ and $\triangle \mathrm{DOC}$
$\mathrm{OA}=\mathrm{OD}$
$O B=O C$
(given)
$\angle A O B=\angle C O D$
(given)
$\therefore \triangle A O B \cong \triangle D O C$
$\therefore \mathrm{AB}=\mathrm{CD}$
(proved)
(SAS axiom)
(c.p.c.t.)

Question 5.

In the given figure, $\mathrm{PQ}|\mid \mathrm{BA}$ and RS CA . If $\mathrm{BP}=\mathrm{RC}$, prove that:
(i) $\triangle B S R \cong \triangle P Q C$
(ii) $B S=P Q$
(iii) $R S=C Q$.

Solution:

Given : In the given figure,
$\mathrm{PQ}\|\mathrm{BA}, \mathrm{RS}\| \mathrm{CA}$
$B P=R C$

To prove :
(i) $\Delta \mathrm{BSR} \cong \triangle \mathrm{PQC}$
(ii) $\mathrm{BS}=\mathrm{PQ}$
(iii) $\mathrm{RS}=\mathrm{CQ}$

Proof: $\mathrm{BP}=\mathrm{RC}$
$\because B C-R C=B C-B P$
$\therefore B R=P C$
Now, in $\triangle B S R$ and $\triangle P Q C$
$\angle \mathrm{B}=\angle \mathrm{P}$
(corresponding angles)
$\angle \mathrm{R}=\angle \mathrm{C} \quad$ (corresponding angles)
$B R=P C$
(proved)
$\therefore \triangle \mathrm{BSR} \cong \triangle \mathrm{PQC}$
$\therefore \mathrm{BS}=\mathrm{PQ}$
(ASA axiom)
$\mathrm{RS}=\mathrm{CQ}$
(c.p.c.t.)
(c.p.c.t.)

Question 6.

In the given figure, $A B=A C, D$ is a point in the interior of $\triangle A B C$ such that $\angle D B C=$ $\angle D C B$. Prove that $A D$ bisects $\angle B A C$ of $\triangle A B C$.
Solution:

Given : In the figure given, $\mathrm{AB}=\mathrm{AC}$
D is a point in the interior of $\triangle A B C$
Such that $\angle \mathrm{DBC}=\angle \mathrm{DCB}$
To prove : AD bisects $\angle \mathrm{BAC}$
Construction : Join AD and produced it to BC in E
Proof: In $\triangle A B C$,
$A B=A C$
$\therefore \angle \mathrm{B}=\angle \mathrm{C}$ (Angles opposite to equal sides)
and $\angle \mathrm{DBC}=\angle \mathrm{DCB}$
(Given)
Subtracting, we get
$\angle \mathrm{B}-\angle \mathrm{DBC}=\angle \mathrm{C}-\angle \mathrm{DCB}$

$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ACD}$
Now in $\triangle A B D$ and $\triangle A C D$
$A D=A D$
$\angle \mathrm{ABD}=\angle \mathrm{ACD}$
$\mathrm{AB}=\mathrm{AC}$
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
$\therefore \angle B A D=\angle C A D$
$\therefore A D$ is bisector of $\angle \mathrm{BAC}$

Question 7.
In the adjoining figure, $A B|\mid D C$. $C E$ and $D E$ bisects $\angle B C D$ and $\angle A D C$ respectively. Prove that $A B=A D+B C$.

Solution:
Given: In the given figure, $\mathrm{AB} \| \mathrm{DC}$
$C E$ and $D E$ bisects $\angle B C D$ and $\angle A D C$ respectively

To prove : $\mathrm{AB}=\mathrm{AD}+\mathrm{BC}$
Proof : $\because \mathrm{AD} \| \mathrm{DC}$ and ED is the transversal
$\therefore \angle \mathrm{AED}=\angle \mathrm{EDC} \quad$ (Alternate angles)
$=\angle \mathrm{ADC} \quad(\because$ ED is bisector of $\angle \mathrm{ADC})$
$\therefore \mathrm{AD}=\mathrm{AE}$
(Sides opposite to equal angles)
Similarly,
$\angle \mathrm{BEC}=\angle \mathrm{ECD}=\angle \mathrm{ECB}$
$\therefore \mathrm{BC}=\mathrm{EB}$
Adding (i) and (ii),
$A D+B C=A E+E B=A B$
$\therefore \mathrm{AB}=\mathrm{AD}+\mathrm{BC}$

Question 8.

In $\triangle A B C, D$ is a point on $B C$ such that $A D$ is the bisector of $\angle B A C$. CE is drawn parallel to DA to meet BD produced at E. Prove that $\triangle C A E$ is isosceles Solution:

Given : $\ln \triangle A B C$,
D is a point on $B C$ such that $A D$ is the bisector of $\angle \mathrm{BAC}$
$\mathrm{CE} \| \mathrm{DA}$ to meet BD produced at E
To prove : $\triangle C A E$ is an isosceles
Proof: $\because A D \| E C$ and $A C$ is its transversal
$\therefore \angle \mathrm{DAC}=\angle \mathrm{ACE} \quad$ (Alternate angles)
and $\angle \mathrm{BAD}=\angle \mathrm{CEA}$
(Corresponding angles)

But $\angle \mathrm{BAD}=\angle \mathrm{DAC}$ ($\because A D$ is bisector of $\angle B A C$)
$\therefore \angle \mathrm{ACE}=\angle \mathrm{CAE}$
$\mathrm{AE}=\mathrm{AC} \quad$ (Sides opposite to equal angles)
$\therefore \triangle A C E$ is an isosceles triangle.

Question 9.

In the figure (ii) given below, ABC is a right angled triangle at $\mathrm{B}, \mathrm{ADEC}$ and BCFG are squares. Prove that $A F=B E$.

Solution:
Given. In right $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
ADEC and BCFG are squares on the sides $A C$ and $B C$ of $\triangle A B C$ respectively $A F$ and BE are joined.
To prove. $\mathrm{AE}=\mathrm{BE}$
Proof. $\angle \mathrm{ACE}=\angle \mathrm{BCF}$
Adding $\angle \mathrm{ACB}$ both sides

$$
\begin{aligned}
& \angle \mathrm{ACB}+\angle \mathrm{ACE}=\angle \mathrm{ACB}+\angle \mathrm{BCF} \\
& \Rightarrow \quad \angle \mathrm{BCE}=\angle \mathrm{ACF}
\end{aligned}
$$

Now in $\triangle \mathrm{BCE}$ and $\triangle \mathrm{ACF}$,

$$
\begin{align*}
& \qquad C F=A C \text { (sides of a square) } \\
& \quad B C=C F(\text { sides of a square }) \\
& \angle B C E=\angle A C F(\text { proved }) \\
& \therefore \triangle B C E \cong \triangle A C F(S A S \text { postulate }) \tag{c.p.c.t.}\\
& \therefore B E=A F \\
& \text { Hence proved. }
\end{align*}
$$

$$
\therefore \mathrm{BE}=\mathrm{AF}
$$

Question 10.
In the given figure, $B D=A D=A C$. If $\angle A B D=36^{\circ}$, find the value of x.

Solution:
Given : In the figure, $B D=A D=A C$
$\angle \mathrm{ABD}=36^{\circ}$
To find : Measure of x.
Proof: $\ln \triangle A B D$,
$\mathrm{AD}=\mathrm{BD}$
(given)
$\therefore \angle \mathrm{ABD}=\angle \mathrm{BAD}=36^{\circ} \quad\left(\because \angle \mathrm{ABD}=36^{\circ}\right)$
\therefore Ext. $\angle \mathrm{ADC}=\angle \mathrm{ABD}+\angle \mathrm{BAD}$
$=36^{\circ}+36^{\circ}=72^{\circ}$
But in $\triangle \mathrm{ADC}$
$\mathrm{AD}=\mathrm{AC}$
$\therefore \angle \mathrm{ADC}=\angle \mathrm{ACD}=72^{\circ}$
and Ext. $\angle \mathrm{PBC}=\angle \mathrm{ABC}+\angle \mathrm{ACD}$
$=36^{\circ}+72^{\circ}=108^{\circ}$
$\therefore x=108^{\circ}$

Question 11.
In the adjoining figure, $T R=T S, \angle 1=2 \angle 2$ and $\angle 4=2 \angle 3$. Prove that $R B=S A$.

Solution:

Given: In the figure, RST is a triangle

$$
\begin{aligned}
& \mathrm{TR}=\mathrm{TS} \\
& \angle 1=2 \angle 2 \text { and } \angle 4=2 \angle 3
\end{aligned}
$$

To prove : $\mathrm{RB}=\mathrm{SA}$
Proof : $\angle 1=\angle 4$

But $2 \angle 2=\angle 1$ and $2 \angle 3=4$
$\therefore 2 \angle 2=2 \angle 3$
$\therefore \angle 2=\angle 3$
\therefore But $\angle \mathrm{TRS}=\angle \mathrm{TSR} \quad(\because \mathrm{TR}=\mathrm{TS}$ given $)$
$\therefore \angle \mathrm{TRS}-\angle \mathrm{BRS}=\angle \mathrm{TSR}-\angle \mathrm{ASR}$
$\Rightarrow \angle \mathrm{ARB}=\angle \mathrm{BSA}$
Now in \triangle RBT and $\triangle \mathrm{SAT}$

$$
\begin{align*}
& \angle \mathrm{T}=\angle \mathrm{T} \tag{Common}\\
& \mathrm{TR}=\mathrm{TS} \\
& \text { and } \angle \mathrm{TRB}=\angle \mathrm{TSA}
\end{align*}
$$

(Given)
$\therefore \triangle \mathrm{RBT} \cong \triangle \mathrm{SAT}$
$\therefore \mathrm{RB}=\mathrm{SA}$
(SAS axiom)
(c.p.c.t.)

Question 12.
(a) In the figure (1) given below, find the value of x.
(b) In the figure (2) given below, $A B=A C$ and $D E|\mid B C$. Calculate (i) x
(ii) y
(iii) $\angle B A C$
(c) In the figure (1) given below, calculate the size of each lettered angle.

Solution:
(a) We have to calculate the value of x.

Now, in $\triangle \mathrm{ABC}$
$\angle 5=36^{\circ}$
Also, $36^{\circ}+\angle 1+\angle 5=180^{\circ} \quad[\because \mathrm{AC}=\mathrm{BC}]$
[sum of all angles in a triangle is 180°]
$\Rightarrow 36^{\circ}+\angle 1+36^{\circ}=180^{\circ} \quad$ [from (1)]
$\Rightarrow 72^{\circ}+\angle 1=180^{\circ} \Rightarrow \angle 1=180^{\circ}-72^{\circ}$
$\Rightarrow \angle 1=108^{\circ}$
Also, $\angle 1+\angle 2=180^{\circ}$
(Linear pair)
$\Rightarrow 108^{\circ}+\angle 2=180^{\circ}$
[From (2)]
$\Rightarrow \angle 2=180^{\circ}-108^{\circ} \Rightarrow \angle 2=72^{\circ}$
Also, $\angle 2=\angle 3$

$$
\begin{equation*}
(\mathrm{AC}=\mathrm{AD}) \tag{3}
\end{equation*}
$$

$\therefore \angle 3=72^{\circ}$
[From (3)].....
Now, in $\triangle \mathrm{ACD}$

$$
\begin{align*}
& \angle 2+\angle 3+\angle 4=180^{\circ} \\
& \left.\quad \quad \text { sunt of all angles in a triangle is } 180^{\circ}\right] \\
& \Rightarrow \quad 72^{\circ}+72^{\circ}+\angle 4=180^{\circ} \quad[\text { From (3) and } \\
& \text { (4)] } \\
& \Rightarrow \quad 144^{\circ}+\angle 4=180^{\circ} \Rightarrow \angle 4=180^{\circ}-144^{\circ} \\
& \Rightarrow \quad \angle 4=36^{\circ} \tag{5}
\end{align*}
$$

$\therefore \quad \mathrm{ABP}$ is a St. line
$\therefore \quad \angle 5+\angle 4+x=180^{\circ}$
$36^{\circ}+36^{\circ}+x=180^{\circ}$
[From (1) and (5)]
$72^{\circ}+x=180 \Rightarrow x=108^{\circ}$
Hence, value of $x=108^{\circ}$ Ans.
(b) Given. $\mathrm{AB}=\mathrm{AC}$, and $\mathrm{DE} \| \mathrm{BC}$
$\angle \mathrm{ADE}=(x+y-36)^{\circ}$
$\angle \mathrm{ABC}=2 x^{\circ}$ and $\angle \mathrm{ACB}=(y-2)^{\circ}$

To Calculate. (i) x (ii) y (iii) $\angle \mathrm{BAC}$
Now, in $\triangle A B C$
$\therefore \mathrm{AB}=\mathrm{AC}$
$2 x=y-2$
[In a triangle equal sides here equal angle opposite to them]
$2 x-y=-2$
$\therefore \mathrm{DE} \| \mathrm{BC}$,
$x+y-36=2 x$
[corresponding angles]
$\Rightarrow x+y-2 x=36 \Rightarrow-x+y=36$
From equation (1) and (2),

$$
\begin{align*}
& 2 x-y= \tag{2}\\
& -2 \\
& -x+y=36 \\
& \hline
\end{align*}
$$

Adding, $\quad x=34$
Substituting the value of x in equation (1), we get

$$
\begin{aligned}
& 2 \times 34-y=-2 \quad \Rightarrow \quad 68-y=-2 \\
& \Rightarrow \quad 68+2=y \quad \Rightarrow \quad 70=y \quad \Rightarrow \quad y=70
\end{aligned}
$$

Hence, value of $x=34^{\circ}$
and value of $y=70^{\circ}$
(iii) In $\triangle \mathrm{ABC}$

$$
\angle \mathrm{BAC}+2 x^{\circ}+(y-2)^{\circ}=180^{\circ}
$$

[sum of all angles in a triangle is 180°]
$\Rightarrow \quad \angle \mathrm{BAC}+2 \times 34^{\circ}+(70-2)^{\circ}=180^{\circ}$
(Substituting the value of x and y)
$\Rightarrow \quad \angle \mathrm{BAC}+68^{\circ}+68^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{BAC}=180^{\circ}-136^{\circ} \Rightarrow \angle \mathrm{BAC}=44^{\circ}$
Hence, value of $\angle \mathrm{BAC}=44^{\circ}$ Ans.
(c) Given. $\angle \mathrm{BAE}=54^{\circ}, \angle \mathrm{DEC}=80^{\circ}$ and $A B=B C$.

To calculate. The value of x, y and z.
Now $\angle 2=80^{\circ}$
(vertically opposite angles
$\therefore \quad \mathrm{AC}$ and BD cut at point E)
In $\triangle \mathrm{ABE}$,
$54^{\circ}+x+\angle 2=180^{\circ}$
(sum of all angles in triangle is 180°)
$\Rightarrow 54^{\circ}+x+80^{\circ}=180^{\circ} \quad\left(\because \angle 2=80^{\circ}\right)$
$\Rightarrow 134^{\circ}+x=180^{\circ} \Rightarrow x=180^{\circ}-134^{\circ}$
$\Rightarrow \quad x=46^{\circ}$
Now, $\angle 1+80^{\circ}=180^{\circ}$
(Linear pair)
$\angle 1=180^{\circ}-80^{\circ} \Rightarrow \angle 1=100^{\circ}$
Also, $\mathrm{AB}=\mathrm{BC}$
(given)
$\angle 3=54^{\circ}$
(In a triangle equal sides have equal angles)
Now, in $\triangle \mathrm{ABC}$
$54^{\circ}+(x+y)+\angle 3=180^{\circ}$
(substituting the value of x and $\angle 3$)
$\Rightarrow 154^{\circ}+y=180^{\circ} \Rightarrow y=180^{\circ}-154^{\circ}$
$\Rightarrow y=26^{\circ}$
$\therefore \mathrm{AB} \| \mathrm{CD}, \quad \therefore x+y=z$
[corresponding angles]
$\Rightarrow 46^{\circ}+26^{\circ}=z \quad$ [From (2) and (3)]
$\Rightarrow z=46^{\circ}+26^{\circ} \Rightarrow z=72^{\circ}$
Hence, value of $x=46^{\circ}, y=26^{\circ}$
and $z=72^{\circ}$

Question 13.
(a) In the figure (1) given below, $A D=B D=D C$ and $\angle A C D=35^{\circ}$. Show that (i) $A C>D C$ (ii) $A B>A D$.
(b) In the figure (2) given below, prove that
(i) $x+y=90^{\circ}$ (ii) $z=90^{\circ}$ (iii) $A B=B C$

Solution:
(a) Given : In the figure given,
$\mathrm{AD}=\mathrm{BD}=\mathrm{DC}$
$\angle \mathrm{ACD}=35^{\circ}$
To prove : (i) $\mathrm{AC}>\mathrm{DC}$, (ii) $\mathrm{AB}>\mathrm{AD}$
Proof : In $\triangle \mathrm{ADC}, \mathrm{AD}=\mathrm{DC}$
$\therefore \angle \mathrm{DAC}=\angle \mathrm{DCA}=35^{\circ}$
$\Rightarrow \angle \mathrm{ADC}=180^{\circ}-(\angle \mathrm{DAC}+\angle \mathrm{DCA})$
$\therefore \angle \mathrm{ADC}=180^{\circ}-\left(35^{\circ}+35^{\circ}\right)$
$=180^{\circ}-70^{\circ}=110^{\circ}$
and Ext. $\angle \mathrm{ADB}=\angle \mathrm{DAC}+\angle \mathrm{DCA}=35^{\circ}+$ $35^{\circ}=70^{\circ}$

$\because \mathrm{AD}=\mathrm{BD}$

$$
\angle \mathrm{BAD}=\angle \mathrm{ABD}
$$

But $\angle \mathrm{BAD}+\angle \mathrm{ABD}=180^{\circ}-\angle \mathrm{ADB}$
$\Rightarrow \angle \mathrm{ABD}+\angle \mathrm{ABD}=180^{\circ}-70^{\circ}=110^{\circ}$
$\Rightarrow 2 \angle \mathrm{ABD}=110^{\circ} \Rightarrow \angle \mathrm{ABD}=\frac{110^{\circ}}{2}=55^{\circ}$
(i) Now $\because \angle A D C>\angle D A C$
$\therefore \mathrm{AC}>\mathrm{DC}$
and $\angle \mathrm{ADB}>\angle \mathrm{ABD}$
$\therefore \mathrm{AB}>\mathrm{AD}$
(b) Given. $\angle \mathrm{EAC}=\angle \mathrm{BAC}=x$

$$
\begin{aligned}
& \angle \mathrm{ABD}=\angle \mathrm{DBC}=y \\
& \angle \mathrm{BDC}=z
\end{aligned}
$$

To prove. (i) $x+y=90^{\circ}$ (ii) $z=90^{\circ}$
(iii) $\mathrm{AB}=\mathrm{BC}$

Proof. (i) $\therefore \mathrm{AE} \| \mathrm{BC}$

$\therefore \angle \mathrm{ACB}=x$
[Alternate angles]
In $\triangle \mathrm{ABC}$

$$
\begin{array}{lrr}
x+ & (y+y)+\angle \mathrm{ACB}=180^{\circ} \\
& \quad \text { [sum of all angles in a triangle is } 180^{\circ} \text {] } \\
\Rightarrow & x+2 y+x=180^{\circ} & \text { [From (1)] } \\
\Rightarrow & 2 x+2 y=180^{\circ} \\
\Rightarrow & 2(x+y)=180^{\circ} & \\
\Rightarrow & x+y=90^{\circ} & \tag{2}\\
\end{array}
$$

(ii) Now, in $\triangle B C D$,

$$
y+z+\angle \mathrm{BCD}=180^{\circ}
$$

[sum of all angles in a triangle is 180°]
$\Rightarrow y+z+x=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+z=180^{\circ} \quad\left[\right.$ From (2),$\left.x+y=90^{\circ}\right]$
$\Rightarrow z=90^{\circ}$
(proved) (3)
(iii) In $\triangle \mathrm{ABC}$
$\angle \mathrm{BAC}=\angle \mathrm{BAC}=x \quad$ (each same value)
$\therefore \mathrm{AB}=\mathrm{CB}$
(In a triangle equal angles has equal sides) (proved)

Question 14.
In the given figure, $A B C$ and DBC are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$. If $A D$ is extended to intersect $B C$ at P, show that
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
(iii) AP bisects $\angle A$ as well as $\angle D$
(iv) AP is the perpendicular bisector of $B C$. Solution:

Given : In the figure, two isosceles triangles $A B C$ and DBC are on the same base $B C$. With vertices A and D on the same side of $B C$.
AD is joined and produced to meet $B C$ at P.
To prove :

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$
(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$
(iv) AP is the perpendicular bisector of BC

Proof : $\because \triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are isosceles
$\mathrm{AB}=\mathrm{AC}$ and $\mathrm{DB}=\mathrm{DC}$
(i) Now in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACP}$
$\mathrm{AB}=\mathrm{AC}$
(Proved)
$D B=D C$
(Proved)
$\mathrm{AD}=\mathrm{AD}$
(Common)
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(SSS axiom)
$\therefore \angle \mathrm{BAD}=\angle \mathrm{CAD}$
(c.p.c.t.)
\therefore ADP bisects $\angle \mathrm{A}$ and $\angle \mathrm{ADB}=\angle \mathrm{ADC}$
(c.p.c.t.)

But $\angle \mathrm{ADB}+\angle \mathrm{BDP}=\angle \mathrm{CAD}+\angle \mathrm{CDP}=180^{\circ}$
$\therefore \angle \mathrm{BDP}=\angle \mathrm{CDP}$
\therefore ADP bisects $\angle \mathrm{D}$ also
Now in $\triangle A P B$ and $\triangle A C D$
$\mathrm{AB}=\mathrm{AC}$
(Given)
$A P=A P$ (Common)
and $\angle \mathrm{BAD}=\angle \mathrm{CAD}$
(Proved)
$\therefore \angle \mathrm{APB} \cong \triangle \mathrm{ACP}$
(SAS axiom)
$\therefore \mathrm{BP}=\mathrm{CP}$
(c.p.c.t.)
and $\angle \mathrm{APB}=\angle \mathrm{APC}$
But $\angle \mathrm{APB}+\angle \mathrm{APC}=180^{\circ}$
(Linear pair)
$\therefore \angle \mathrm{APB}=\angle \mathrm{APC}=90^{\circ}$
and $B P=P C$
$\therefore \mathrm{AP}$ is perpendicular bisector of BC

Question 15.
In the given figure, $A P \perp I$ and $P R>P Q$. Show that $A R>A Q$.

Solution:
Given : In the given figure, $\mathrm{AP} \perp l$ and $\mathrm{PR}>\mathrm{PQ}$

To prove : AR > AQ
Construction : Take a point S on l,
Such that PS = PQ
Join A and S
Proof: In $\triangle A Q P$ and $\triangle A S P$

$$
\begin{aligned}
& \mathrm{AP}=\mathrm{AP} \\
& \mathrm{QP}=\mathrm{SP}
\end{aligned}
$$

$\angle \mathrm{APQ}=\angle \mathrm{APS}$
$\therefore \triangle \mathrm{APQ} \cong \triangle \mathrm{APS}$
(Common)
(Given)
(Each 90°)
(SAS axiom)
$\therefore \angle 1=\angle 2$
$\mathrm{AQ}=\mathrm{AS} \quad$ (Sides opposite to equal angles)
In \triangle ASR
Ext. ASP > $\angle \mathrm{ARS}$
$\Rightarrow \angle 2>\angle 3$
$\Rightarrow \angle 1>\angle 3$
$(\because \angle 1=\angle 2)$
$\therefore \mathrm{AR}>\mathrm{AQ}$

Question 16.
If O is any point in the interior of a triangle $A B C$, show that $O A+O B+O C>\frac{1}{2}$ $(A B+B C+C A)$.

Solution:
Given : In the figure, O is any point in the interior of $\triangle A B C$.

To prove : $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
Construct: Join B and C.
Proof: In $\triangle \mathrm{OBC}$
$\mathrm{OB}+\mathrm{OC}>\mathrm{BC}$
(Sum of two sides of a triangle is greater than
its third side)
Similarly $O C+O A>C A$
and $\mathrm{OA}+\mathrm{OB}>\mathrm{AB}$
Adding are get,
$\because(\mathrm{OB}+\mathrm{OC}+\mathrm{OC}+\mathrm{OA}+\mathrm{OA}+\mathrm{OB})>\mathrm{BC}+$ $\mathrm{CA}+\mathrm{AB}$
$\Rightarrow 2(\mathrm{OA}+\mathrm{OB}+\mathrm{OC})>\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
$\Rightarrow \mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

Question P.Q.

Construct a triangle $A B C$ given that base $B C=5.5 \mathrm{~cm}, \angle B=75^{\circ}$ and height $=4.2$ cm.

Solution:

Given. In a triangle ABC , $\mathrm{Base} \mathrm{BC}=5.5$. $\mathrm{cm}, \angle \mathrm{B}=750^{\circ}$ and height $=4.2 \mathrm{~cm}$.

Required. To construct a triangle ABC .
Steps of Construction :
(1) Draw a line $\mathrm{BC}=5.5 \mathrm{~cm}$.
(2) Draw $\angle \mathrm{PBC}=75^{\circ}$.
(3) Draw the perpendicular bisector of BC and cut the $B C$ at point D.
(4) Cut the DM at point E such that $\mathrm{DE}=4.2 \mathrm{~cm}$.
(5) Draw the line at point which is parallel to line BC.
(6) This parallel line cut the BP at point A.
(7) Join AC.
(8) $A B C$ is the required triangle.

Given. In a triangle ABC, B ase $\mathrm{BC}=5.5$.
$\mathrm{cm}, \angle \mathrm{B}=750^{\circ}$ and height $=4.2 \mathrm{~cm}$.

1

Required. To construct a triangle ABC .
Steps of Construction :
(1) Draw a line $\mathrm{BC}=5.5 \mathrm{~cm}$.
(2) Draw $\angle \mathrm{PBC}=75^{\circ}$.
(3) Draw the perpendicular bisector of BC and cut the $B C$ at point D.
(4) Cut the $D M$ at point E such that $D E=4.2 \mathrm{~cm}$.
(5) Draw the line at point which is parallel to line BC.
(6) This parallel line cut the BP at point A.
(7) Join AC.
(8) $A B C$ is the required triangle.

Question P.Q.
Construct a triangle $A B C$ in which $B C=6.5 \mathrm{~cm}, \angle B=75^{\circ}$ and $\angle A=45^{\circ}$. Also construct median of $A A B C$ passing through B.
Solution:

Given. In $\triangle \mathrm{ABC}, \mathrm{BC}=6.5 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\angle \mathrm{A}=45^{\circ}$.
Required. (i) To construct a triangle ABC .
(ii) Construct median of $\triangle \mathrm{ABC}$ passing through B .

Step of Construction.
(1) Draw a line $\mathrm{BC}=6.5 \mathrm{~cm}$.
(2) Make $\angle \mathrm{PBC}=75^{\circ}$.
(3) Make $\angle \mathrm{BCQ}=60^{\circ}$.
(4) BP and CQ cut at point A .
(5) ABC is the required triangle.
(6) Draw the bisector of AC.
(7) The bisector line cut the line $A C$ at point D.
(8) Join BD.
(9) BD is the required median of $\triangle \mathrm{ABC}$ passing through B.

Question P.Q.
Construct triangle $A B C$ given that $A B-A C=2.4 \mathrm{~cm}, B C=6.5 \mathrm{~cm}$. and $\angle B=45^{\circ}$.

Solution:
Given. A triangle $A B C$ in which $A B-$ $\mathrm{AC}=2.4 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}, \angle \mathrm{~B}=4.5^{\circ}$. Required. To construct a triangle ABC .

Steps of Construction :
(1) Draw $\mathrm{BC}=6.5 \mathrm{~cm}$.
(2) Draw BP making angle 65° with BC .
(3) From BP, cut $\mathrm{BD}=2.4 \mathrm{~cm}$.
(4) Join D and C.
(5) Draw perpendicular bisector of DC which cuts

BP at A.
(6) Join A and C.
(7) ABC is the required triangle.

